--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co./bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0654 - Precision: 0.9338 - Recall: 0.9498 - F1: 0.9418 - Accuracy: 0.9865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.069 | 1.0 | 1756 | 0.0635 | 0.9070 | 0.9352 | 0.9209 | 0.9826 | | 0.0311 | 2.0 | 3512 | 0.0656 | 0.9338 | 0.9478 | 0.9408 | 0.9859 | | 0.0179 | 3.0 | 5268 | 0.0654 | 0.9338 | 0.9498 | 0.9418 | 0.9865 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2