File size: 1,452 Bytes
d5ab12e 13368cb d5ab12e dcc56e2 d5ab12e dcc56e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: mit
base_model: warp-ai/wuerstchen-prior
datasets:
- Aff4n20/ancient-coin-dataset
tags:
- wuerstchen
- text-to-image
- diffusers
- diffusers-training
- lora
inference: true
---
# LoRA Finetuning - Aff4n20/wuerstchen-ancient-coins
This pipeline was finetuned from **warp-ai/wuerstchen-prior** on the **Aff4n20/ancient-coin-dataset** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['inscription, IMP AVG DIVI F; bare head of Augustus left; in front palm; behind, winged caduceus']:
![val_imgs_grid](./val_imgs_grid.png)
## Pipeline usage
You can use the pipeline like so:
```python
from diffusers import DiffusionPipeline
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"warp-ai/wuerstchen", torch_dtype=torch.float16
)
# load lora weights from folder:
pipeline.prior_pipe.load_lora_weights("Aff4n20/wuerstchen-ancient-coins", torch_dtype=torch.float16)
image = pipeline(prompt=prompt).images[0]
image.save("my_image.png")
```
## Training info
These are the key hyperparameters used during training:
* LoRA rank: 4
* Epochs: 19
* Learning rate: 0.0001
* Batch size: 1
* Gradient accumulation steps: 4
* Image resolution: 512
* Mixed-precision: fp16
More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/aff4n20/text2image-fine-tune/runs/5ewvbkug).
|