Upload 2 files
Browse fileslerobot yaml files
- lerobot_configs/act_koch_real.yaml +102 -0
- lerobot_configs/koch.yaml +46 -0
lerobot_configs/act_koch_real.yaml
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# Use `act_koch_real.yaml` to train on real-world datasets collected on Alexander Koch's robots.
|
4 |
+
# Compared to `act.yaml`, it contains 2 cameras (i.e. laptop, phone) instead of 1 camera (i.e. top).
|
5 |
+
# Also, `training.eval_freq` is set to -1. This config is used to evaluate checkpoints at a certain frequency of training steps.
|
6 |
+
# When it is set to -1, it deactivates evaluation. This is because real-world evaluation is done through our `control_robot.py` script.
|
7 |
+
# Look at the documentation in header of `control_robot.py` for more information on how to collect data , train and evaluate a policy.
|
8 |
+
#
|
9 |
+
# Example of usage for training:
|
10 |
+
# ```bash
|
11 |
+
# python lerobot/scripts/train.py \
|
12 |
+
# policy=act_koch_real \
|
13 |
+
# env=koch_real
|
14 |
+
# ```
|
15 |
+
|
16 |
+
seed: 1000
|
17 |
+
dataset_repo_id: lerobot/koch_pick_place_lego
|
18 |
+
|
19 |
+
override_dataset_stats:
|
20 |
+
observation.images.laptop:
|
21 |
+
# stats from imagenet, since we use a pretrained vision model
|
22 |
+
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
23 |
+
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
24 |
+
observation.images.logitech:
|
25 |
+
# stats from imagenet, since we use a pretrained vision model
|
26 |
+
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
27 |
+
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
28 |
+
|
29 |
+
training:
|
30 |
+
offline_steps: 80000
|
31 |
+
online_steps: 0
|
32 |
+
eval_freq: -1
|
33 |
+
save_freq: 10000
|
34 |
+
log_freq: 100
|
35 |
+
save_checkpoint: true
|
36 |
+
|
37 |
+
batch_size: 8
|
38 |
+
lr: 1e-5
|
39 |
+
lr_backbone: 1e-5
|
40 |
+
weight_decay: 1e-4
|
41 |
+
grad_clip_norm: 10
|
42 |
+
online_steps_between_rollouts: 1
|
43 |
+
|
44 |
+
delta_timestamps:
|
45 |
+
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
|
46 |
+
|
47 |
+
eval:
|
48 |
+
n_episodes: 50
|
49 |
+
batch_size: 50
|
50 |
+
|
51 |
+
# See `configuration_act.py` for more details.
|
52 |
+
policy:
|
53 |
+
name: act
|
54 |
+
|
55 |
+
# Input / output structure.
|
56 |
+
n_obs_steps: 1
|
57 |
+
chunk_size: 100
|
58 |
+
n_action_steps: 100
|
59 |
+
|
60 |
+
input_shapes:
|
61 |
+
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
|
62 |
+
observation.images.laptop: [3, 480, 640]
|
63 |
+
observation.images.logitech: [3, 480, 640]
|
64 |
+
observation.state: ["${env.state_dim}"]
|
65 |
+
output_shapes:
|
66 |
+
action: ["${env.action_dim}"]
|
67 |
+
|
68 |
+
# Normalization / Unnormalization
|
69 |
+
input_normalization_modes:
|
70 |
+
observation.images.laptop: mean_std
|
71 |
+
observation.images.logitech: mean_std
|
72 |
+
observation.state: mean_std
|
73 |
+
output_normalization_modes:
|
74 |
+
action: mean_std
|
75 |
+
|
76 |
+
# Architecture.
|
77 |
+
# Vision backbone.
|
78 |
+
vision_backbone: resnet18
|
79 |
+
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
|
80 |
+
replace_final_stride_with_dilation: false
|
81 |
+
# Transformer layers.
|
82 |
+
pre_norm: false
|
83 |
+
dim_model: 512
|
84 |
+
n_heads: 8
|
85 |
+
dim_feedforward: 3200
|
86 |
+
feedforward_activation: relu
|
87 |
+
n_encoder_layers: 4
|
88 |
+
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
|
89 |
+
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
|
90 |
+
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
|
91 |
+
n_decoder_layers: 1
|
92 |
+
# VAE.
|
93 |
+
use_vae: true
|
94 |
+
latent_dim: 32
|
95 |
+
n_vae_encoder_layers: 4
|
96 |
+
|
97 |
+
# Inference.
|
98 |
+
temporal_ensemble_momentum: null
|
99 |
+
|
100 |
+
# Training and loss computation.
|
101 |
+
dropout: 0.1
|
102 |
+
kl_weight: 10.0
|
lerobot_configs/koch.yaml
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: lerobot.common.robot_devices.robots.koch.KochRobot
|
2 |
+
calibration_path: .cache/calibration/koch.pkl
|
3 |
+
leader_arms:
|
4 |
+
main:
|
5 |
+
_target_: lerobot.common.robot_devices.motors.dynamixel.DynamixelMotorsBus
|
6 |
+
port: /dev/tty.usbmodem585A0085151
|
7 |
+
motors:
|
8 |
+
# name: (index, model)
|
9 |
+
shoulder_pan: [1, "xl330-m077"]
|
10 |
+
shoulder_lift: [2, "xl330-m077"]
|
11 |
+
elbow_flex: [3, "xl330-m077"]
|
12 |
+
wrist_flex: [4, "xl330-m077"]
|
13 |
+
wrist_roll: [5, "xl330-m077"]
|
14 |
+
gripper: [6, "xl330-m077"]
|
15 |
+
follower_arms:
|
16 |
+
main:
|
17 |
+
_target_: lerobot.common.robot_devices.motors.dynamixel.DynamixelMotorsBus
|
18 |
+
port: /dev/tty.usbmodem585A0081771
|
19 |
+
motors:
|
20 |
+
# name: (index, model)
|
21 |
+
shoulder_pan: [1, "xl430-w250"]
|
22 |
+
shoulder_lift: [2, "xl430-w250"]
|
23 |
+
elbow_flex: [3, "xl330-m288"]
|
24 |
+
wrist_flex: [4, "xl330-m288"]
|
25 |
+
wrist_roll: [5, "xl330-m288"]
|
26 |
+
gripper: [6, "xl330-m288"]
|
27 |
+
cameras:
|
28 |
+
logitech:
|
29 |
+
_target_: lerobot.common.robot_devices.cameras.opencv.OpenCVCamera
|
30 |
+
camera_index: 0
|
31 |
+
fps: 30
|
32 |
+
width: 640
|
33 |
+
height: 480
|
34 |
+
laptop:
|
35 |
+
_target_: lerobot.common.robot_devices.cameras.opencv.OpenCVCamera
|
36 |
+
camera_index: 3
|
37 |
+
fps: 30
|
38 |
+
width: 640
|
39 |
+
height: 480
|
40 |
+
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
41 |
+
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
42 |
+
# the number of motors in your follower arms.
|
43 |
+
max_relative_target: null
|
44 |
+
# Sets the leader arm in torque mode with the gripper motor set to this angle. This makes it possible
|
45 |
+
# to squeeze the gripper and have it spring back to an open position on its own.
|
46 |
+
gripper_open_degree: 35.156
|