--- language: - ur license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small UR results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: ur, split: test' metrics: - name: Wer type: wer value: 41.698656429942424 --- # Whisper Small UR - Muhammad Abdullah This model is a fine-tuned version of [openai/whisper-Small](https://huggingface.co./openai/whisper-large) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.9758 - Wer: 41.6987 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0074 | 9.62 | 1000 | 0.8238 | 42.0345 | | 0.0003 | 19.23 | 2000 | 0.9381 | 42.6583 | | 0.0002 | 28.85 | 3000 | 0.9758 | 41.6987 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2