AbderrahmanSkiredj1 commited on
Commit
2a78b02
1 Parent(s): 2eaa300

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,484 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:853827
10
+ - loss:MatryoshkaLoss
11
+ - loss:MultipleNegativesRankingLoss
12
+ datasets: []
13
+ widget:
14
+ - source_sentence: كيف يمكنني أن أخسر الوزن من خلال النظام الغذائي وتناول الطعام الصحي؟
15
+ sentences:
16
+ - هل يمكن أن نحصل على (آركتشيب) في (بيغ فور) بعد إزالة كلتا المجموعتين بشكل منفصل؟
17
+ - ما هي سلسلة المطاعم الأمريكية الموجودة في النرويج؟ ما هو رأي النرويجيين عنها؟
18
+ - كيف لي أن أخسر الوزن من خلال النظام الغذائي فقط؟
19
+ - source_sentence: هل من المقبول أن تجيب على سؤالك؟
20
+ sentences:
21
+ - ما هو أفضل كتاب على الإطلاق؟
22
+ - أي مسحوق بروتيني بدون آثار جانبية؟
23
+ - إذا أجبت على سؤالك الخاص على Quora، هل تصنيف إجابتك ينخفض؟
24
+ - source_sentence: كيف تحدد ما إذا كان البريد الإلكتروني قد تم فتحه من قبل المستلم؟
25
+ sentences:
26
+ - لقد حصلت على 160 علامة في الامتحان الرئيسي ما هي فرص CSE في LNMIIT Jaipur؟
27
+ - امرأة تعزف على آلة موسيقية
28
+ - كيف يمكن للمرء أن يتتبع ما إذا تم قراءة البريد الإلكتروني المرسل؟
29
+ - source_sentence: رجل وامرأة يتنزهان مع كلابهما
30
+ sentences:
31
+ - الزوجان يتنزهان مع كلابهما.
32
+ - رجل وامرأة يتنزهون مع خنازيرهم
33
+ - هل يمكنك الحصول على جسد مثالي بدون جهد؟
34
+ - source_sentence: يتم إنتاج أمثلة جميلة من المينا، والسيراميك، والفخار في وفرة كبيرة،
35
+ وغالبا ما تتبع موضوع سلتيكي.
36
+ sentences:
37
+ - عملائنا بالكاد يستطيعون تحمل تكاليف مساعدتنا القانونية
38
+ - يتم إنتاج الفخار الصغير الذي له موضوع سلتيكي.
39
+ - يتم إنتاج عدد كبير من العناصر ذات المواضيع السلتية.
40
+ pipeline_tag: sentence-similarity
41
+ ---
42
+
43
+ # SentenceTransformer
44
+
45
+ This is a [sentence-transformers](https://www.SBERT.net) model trained on the AbderrahmanSkiredj1/arabic_quora_duplicates_stsb_alue_holyquran_aranli_900k_anchor_positive_negative dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** Sentence Transformer
51
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Output Dimensionality:** 768 tokens
54
+ - **Similarity Function:** Cosine Similarity
55
+ - **Training Dataset:**
56
+ - AbderrahmanSkiredj1/arabic_quora_duplicates_stsb_alue_holyquran_aranli_900k_anchor_positive_negative
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
63
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
64
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
65
+
66
+ ### Full Model Architecture
67
+
68
+ ```
69
+ SentenceTransformer(
70
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
71
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
72
+ )
73
+ ```
74
+
75
+ ## Usage
76
+
77
+ ### Direct Usage (Sentence Transformers)
78
+
79
+ First install the Sentence Transformers library:
80
+
81
+ ```bash
82
+ pip install -U sentence-transformers
83
+ ```
84
+
85
+ Then you can load this model and run inference.
86
+ ```python
87
+ from sentence_transformers import SentenceTransformer
88
+
89
+ # Download from the 🤗 Hub
90
+ model = SentenceTransformer("AbderrahmanSkiredj1/Arabic_text_embedding_for_sts")
91
+ # Run inference
92
+ sentences = [
93
+ 'يتم إنتاج أمثلة جميلة من المينا، والسيراميك، والفخار في وفرة كبيرة، وغالبا ما تتبع موضوع سلتيكي.',
94
+ 'يتم إنتاج عدد كبير من العناصر ذات المواضيع السلتية.',
95
+ 'يتم إنتاج الفخار الصغير الذي له موضوع سلتيكي.',
96
+ ]
97
+ embeddings = model.encode(sentences)
98
+ print(embeddings.shape)
99
+ # [3, 768]
100
+
101
+ # Get the similarity scores for the embeddings
102
+ similarities = model.similarity(embeddings, embeddings)
103
+ print(similarities.shape)
104
+ # [3, 3]
105
+ ```
106
+
107
+ <!--
108
+ ### Direct Usage (Transformers)
109
+
110
+ <details><summary>Click to see the direct usage in Transformers</summary>
111
+
112
+ </details>
113
+ -->
114
+
115
+ <!--
116
+ ### Downstream Usage (Sentence Transformers)
117
+
118
+ You can finetune this model on your own dataset.
119
+
120
+ <details><summary>Click to expand</summary>
121
+
122
+ </details>
123
+ -->
124
+
125
+ <!--
126
+ ### Out-of-Scope Use
127
+
128
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
129
+ -->
130
+
131
+ <!--
132
+ ## Bias, Risks and Limitations
133
+
134
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
135
+ -->
136
+
137
+ <!--
138
+ ### Recommendations
139
+
140
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
141
+ -->
142
+
143
+ ## Training Details
144
+
145
+ ### Training Dataset
146
+
147
+ #### AbderrahmanSkiredj1/arabic_quora_duplicates_stsb_alue_holyquran_aranli_900k_anchor_positive_negative
148
+
149
+ * Dataset: AbderrahmanSkiredj1/arabic_quora_duplicates_stsb_alue_holyquran_aranli_900k_anchor_positive_negative
150
+ * Size: 853,827 training samples
151
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
152
+ * Approximate statistics based on the first 1000 samples:
153
+ | | anchor | positive | negative |
154
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
155
+ | type | string | string | string |
156
+ | details | <ul><li>min: 4 tokens</li><li>mean: 14.54 tokens</li><li>max: 91 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.62 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.32 tokens</li><li>max: 35 tokens</li></ul> |
157
+ * Samples:
158
+ | anchor | positive | negative |
159
+ |:----------------------------------------------------------------------------------|:-------------------------------------------------------|:-------------------------------------------------------|
160
+ | <code>هل يمكنك أن تأكل نفس الشيء كل يوم وتحصل على كل التغذية التي تحتاجها؟</code> | <code>هل الأكل نفس الشيء كل يوم صحي؟</code> | <code>ما هي القوة الخارقة التي تتمنى أن تملكها؟</code> |
161
+ | <code>ثلاثة لاعبي كرة قدم، رقم 16 يرمي الكرة، رقم 71 يمنع الخصم الآخر.</code> | <code>لاعبي كرة القدم يرمون ويمنعون بعضهم البعض</code> | <code>الفريق يأكل البيتزا في مطعم</code> |
162
+ | <code>كيف تحسن مهاراتك في الكتابة؟</code> | <code>كيف أستمر في تحسين كتابتي؟</code> | <code>كيف يتم تحديد أرقام الضمان الاجتماعي؟</code> |
163
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
164
+ ```json
165
+ {
166
+ "loss": "MultipleNegativesRankingLoss",
167
+ "matryoshka_dims": [
168
+ 768,
169
+ 512,
170
+ 256,
171
+ 128,
172
+ 64
173
+ ],
174
+ "matryoshka_weights": [
175
+ 1,
176
+ 1,
177
+ 1,
178
+ 1,
179
+ 1
180
+ ],
181
+ "n_dims_per_step": -1
182
+ }
183
+ ```
184
+
185
+ ### Evaluation Dataset
186
+
187
+ #### AbderrahmanSkiredj1/arabic_quora_duplicates_stsb_alue_holyquran_aranli_900k_anchor_positive_negative
188
+
189
+ * Dataset: AbderrahmanSkiredj1/arabic_quora_duplicates_stsb_alue_holyquran_aranli_900k_anchor_positive_negative
190
+ * Size: 11,584 evaluation samples
191
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
192
+ * Approximate statistics based on the first 1000 samples:
193
+ | | anchor | positive | negative |
194
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
195
+ | type | string | string | string |
196
+ | details | <ul><li>min: 3 tokens</li><li>mean: 16.03 tokens</li><li>max: 88 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.72 tokens</li><li>max: 221 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 10.59 tokens</li><li>max: 42 tokens</li></ul> |
197
+ * Samples:
198
+ | anchor | positive | negative |
199
+ |:--------------------------------------------------------------------------------------|:----------------------------------------------------|:---------------------------------------------------------------------------|
200
+ | <code>ماذا سيحدث لو توقفت الأرض عن الدوران وتدور في نفس الوقت؟</code> | <code>ماذا سيحدث إذا توقفت الأرض عن الدوران؟</code> | <code>ما هو أفضل هاتف ذكي تحت 15000؟</code> |
201
+ | <code>ثلاثة متفرجين بالغين وطفل واحد ينظرون إلى السماء بينما يقفون على الرصيف.</code> | <code>أربعة أشخاص ينظرون إلى السماء.</code> | <code>رجل وثلاثة أطفال يشاهدون بالونات الهيليوم تطفو أعلى في الهواء</code> |
202
+ | <code>ماذا تفعل الدول لمنع الحرب؟</code> | <code>كيف يجب على الدول أن تمنع الحرب؟</code> | <code>كيف يمكنني كسب المال من بدء مدونة؟</code> |
203
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
204
+ ```json
205
+ {
206
+ "loss": "MultipleNegativesRankingLoss",
207
+ "matryoshka_dims": [
208
+ 768,
209
+ 512,
210
+ 256,
211
+ 128,
212
+ 64
213
+ ],
214
+ "matryoshka_weights": [
215
+ 1,
216
+ 1,
217
+ 1,
218
+ 1,
219
+ 1
220
+ ],
221
+ "n_dims_per_step": -1
222
+ }
223
+ ```
224
+
225
+ ### Training Hyperparameters
226
+ #### Non-Default Hyperparameters
227
+
228
+ - `per_device_train_batch_size`: 64
229
+ - `per_device_eval_batch_size`: 64
230
+ - `learning_rate`: 1e-06
231
+ - `num_train_epochs`: 10
232
+ - `warmup_ratio`: 0.1
233
+ - `fp16`: True
234
+ - `batch_sampler`: no_duplicates
235
+
236
+ #### All Hyperparameters
237
+ <details><summary>Click to expand</summary>
238
+
239
+ - `overwrite_output_dir`: False
240
+ - `do_predict`: False
241
+ - `prediction_loss_only`: True
242
+ - `per_device_train_batch_size`: 64
243
+ - `per_device_eval_batch_size`: 64
244
+ - `per_gpu_train_batch_size`: None
245
+ - `per_gpu_eval_batch_size`: None
246
+ - `gradient_accumulation_steps`: 1
247
+ - `eval_accumulation_steps`: None
248
+ - `learning_rate`: 1e-06
249
+ - `weight_decay`: 0
250
+ - `adam_beta1`: 0.9
251
+ - `adam_beta2`: 0.999
252
+ - `adam_epsilon`: 1e-08
253
+ - `max_grad_norm`: 1.0
254
+ - `num_train_epochs`: 10
255
+ - `max_steps`: -1
256
+ - `lr_scheduler_type`: linear
257
+ - `lr_scheduler_kwargs`: {}
258
+ - `warmup_ratio`: 0.1
259
+ - `warmup_steps`: 0
260
+ - `log_level`: passive
261
+ - `log_level_replica`: warning
262
+ - `log_on_each_node`: True
263
+ - `logging_nan_inf_filter`: True
264
+ - `save_safetensors`: True
265
+ - `save_on_each_node`: False
266
+ - `save_only_model`: False
267
+ - `no_cuda`: False
268
+ - `use_cpu`: False
269
+ - `use_mps_device`: False
270
+ - `seed`: 42
271
+ - `data_seed`: None
272
+ - `jit_mode_eval`: False
273
+ - `use_ipex`: False
274
+ - `bf16`: False
275
+ - `fp16`: True
276
+ - `fp16_opt_level`: O1
277
+ - `half_precision_backend`: auto
278
+ - `bf16_full_eval`: False
279
+ - `fp16_full_eval`: False
280
+ - `tf32`: None
281
+ - `local_rank`: 0
282
+ - `ddp_backend`: None
283
+ - `tpu_num_cores`: None
284
+ - `tpu_metrics_debug`: False
285
+ - `debug`: []
286
+ - `dataloader_drop_last`: False
287
+ - `dataloader_num_workers`: 0
288
+ - `dataloader_prefetch_factor`: None
289
+ - `past_index`: -1
290
+ - `disable_tqdm`: False
291
+ - `remove_unused_columns`: True
292
+ - `label_names`: None
293
+ - `load_best_model_at_end`: False
294
+ - `ignore_data_skip`: False
295
+ - `fsdp`: []
296
+ - `fsdp_min_num_params`: 0
297
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
298
+ - `fsdp_transformer_layer_cls_to_wrap`: None
299
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
300
+ - `deepspeed`: None
301
+ - `label_smoothing_factor`: 0.0
302
+ - `optim`: adamw_torch
303
+ - `optim_args`: None
304
+ - `adafactor`: False
305
+ - `group_by_length`: False
306
+ - `length_column_name`: length
307
+ - `ddp_find_unused_parameters`: None
308
+ - `ddp_bucket_cap_mb`: None
309
+ - `ddp_broadcast_buffers`: False
310
+ - `dataloader_pin_memory`: True
311
+ - `dataloader_persistent_workers`: False
312
+ - `skip_memory_metrics`: True
313
+ - `use_legacy_prediction_loop`: False
314
+ - `push_to_hub`: False
315
+ - `resume_from_checkpoint`: None
316
+ - `hub_model_id`: None
317
+ - `hub_strategy`: every_save
318
+ - `hub_private_repo`: False
319
+ - `hub_always_push`: False
320
+ - `gradient_checkpointing`: False
321
+ - `gradient_checkpointing_kwargs`: None
322
+ - `include_inputs_for_metrics`: False
323
+ - `fp16_backend`: auto
324
+ - `push_to_hub_model_id`: None
325
+ - `push_to_hub_organization`: None
326
+ - `mp_parameters`:
327
+ - `auto_find_batch_size`: False
328
+ - `full_determinism`: False
329
+ - `torchdynamo`: None
330
+ - `ray_scope`: last
331
+ - `ddp_timeout`: 1800
332
+ - `torch_compile`: False
333
+ - `torch_compile_backend`: None
334
+ - `torch_compile_mode`: None
335
+ - `dispatch_batches`: None
336
+ - `split_batches`: None
337
+ - `include_tokens_per_second`: False
338
+ - `include_num_input_tokens_seen`: False
339
+ - `neftune_noise_alpha`: None
340
+ - `optim_target_modules`: None
341
+ - `batch_sampler`: no_duplicates
342
+ - `multi_dataset_batch_sampler`: proportional
343
+
344
+ </details>
345
+
346
+ ### Training Logs
347
+ | Epoch | Step | Training Loss |
348
+ |:------:|:----:|:-------------:|
349
+ | 0.0120 | 40 | 3.1459 |
350
+ | 0.0240 | 80 | 3.2058 |
351
+ | 0.0360 | 120 | 3.0837 |
352
+ | 0.0480 | 160 | 3.1024 |
353
+ | 0.0600 | 200 | 3.015 |
354
+ | 0.0719 | 240 | 3.1311 |
355
+ | 0.0839 | 280 | 3.1101 |
356
+ | 0.0959 | 320 | 3.1288 |
357
+ | 0.1079 | 360 | 3.045 |
358
+ | 0.1199 | 400 | 3.0488 |
359
+ | 0.1319 | 440 | 3.1001 |
360
+ | 0.1439 | 480 | 3.2334 |
361
+ | 0.1559 | 520 | 3.0581 |
362
+ | 0.1679 | 560 | 2.9821 |
363
+ | 0.1799 | 600 | 3.1733 |
364
+ | 0.1918 | 640 | 3.0658 |
365
+ | 0.2038 | 680 | 3.0721 |
366
+ | 0.2158 | 720 | 3.1647 |
367
+ | 0.2278 | 760 | 3.0326 |
368
+ | 0.2398 | 800 | 3.1014 |
369
+ | 0.2518 | 840 | 2.9365 |
370
+ | 0.2638 | 880 | 3.0642 |
371
+ | 0.2758 | 920 | 2.9864 |
372
+ | 0.2878 | 960 | 3.0939 |
373
+ | 0.2998 | 1000 | 3.0676 |
374
+ | 0.3118 | 1040 | 2.9717 |
375
+ | 0.3237 | 1080 | 2.9908 |
376
+ | 0.3357 | 1120 | 2.9506 |
377
+ | 0.3477 | 1160 | 2.907 |
378
+ | 0.3597 | 1200 | 3.0451 |
379
+ | 0.3717 | 1240 | 3.0002 |
380
+ | 0.3837 | 1280 | 2.8842 |
381
+ | 0.3957 | 1320 | 3.0697 |
382
+ | 0.4077 | 1360 | 2.8967 |
383
+ | 0.4197 | 1400 | 3.0008 |
384
+ | 0.4317 | 1440 | 3.0027 |
385
+ | 0.4436 | 1480 | 2.9229 |
386
+ | 0.4556 | 1520 | 2.9539 |
387
+ | 0.4676 | 1560 | 2.9415 |
388
+ | 0.4796 | 1600 | 2.9401 |
389
+ | 0.4916 | 1640 | 2.8498 |
390
+ | 0.5036 | 1680 | 2.9646 |
391
+ | 0.5156 | 1720 | 2.9231 |
392
+ | 0.5276 | 1760 | 2.942 |
393
+ | 0.5396 | 1800 | 2.8521 |
394
+ | 0.5516 | 1840 | 2.8362 |
395
+ | 0.5635 | 1880 | 2.8497 |
396
+ | 0.5755 | 1920 | 2.8867 |
397
+ | 0.5875 | 1960 | 2.9148 |
398
+ | 0.5995 | 2000 | 2.9343 |
399
+ | 0.6115 | 2040 | 2.8537 |
400
+ | 0.6235 | 2080 | 2.7989 |
401
+ | 0.6355 | 2120 | 2.8508 |
402
+ | 0.6475 | 2160 | 2.916 |
403
+ | 0.6595 | 2200 | 2.926 |
404
+ | 0.6715 | 2240 | 2.752 |
405
+ | 0.6835 | 2280 | 2.7792 |
406
+ | 0.6954 | 2320 | 2.8381 |
407
+ | 0.7074 | 2360 | 2.7455 |
408
+ | 0.7194 | 2400 | 2.8953 |
409
+ | 0.7314 | 2440 | 2.8179 |
410
+ | 0.7434 | 2480 | 2.8471 |
411
+ | 0.7554 | 2520 | 2.7538 |
412
+ | 0.7674 | 2560 | 2.8271 |
413
+ | 0.7794 | 2600 | 2.8401 |
414
+ | 0.7914 | 2640 | 2.7402 |
415
+ | 0.8034 | 2680 | 2.6439 |
416
+
417
+
418
+ ### Framework Versions
419
+ - Python: 3.10.14
420
+ - Sentence Transformers: 3.0.1
421
+ - Transformers: 4.39.3
422
+ - PyTorch: 2.2.2+cu121
423
+ - Accelerate: 0.29.1
424
+ - Datasets: 2.18.0
425
+ - Tokenizers: 0.15.2
426
+
427
+ ## Citation
428
+
429
+ ### BibTeX
430
+
431
+ #### Sentence Transformers
432
+ ```bibtex
433
+ @inproceedings{reimers-2019-sentence-bert,
434
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
435
+ author = "Reimers, Nils and Gurevych, Iryna",
436
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
437
+ month = "11",
438
+ year = "2019",
439
+ publisher = "Association for Computational Linguistics",
440
+ url = "https://arxiv.org/abs/1908.10084",
441
+ }
442
+ ```
443
+
444
+ #### MatryoshkaLoss
445
+ ```bibtex
446
+ @misc{kusupati2024matryoshka,
447
+ title={Matryoshka Representation Learning},
448
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
449
+ year={2024},
450
+ eprint={2205.13147},
451
+ archivePrefix={arXiv},
452
+ primaryClass={cs.LG}
453
+ }
454
+ ```
455
+
456
+ #### MultipleNegativesRankingLoss
457
+ ```bibtex
458
+ @misc{henderson2017efficient,
459
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
460
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
461
+ year={2017},
462
+ eprint={1705.00652},
463
+ archivePrefix={arXiv},
464
+ primaryClass={cs.CL}
465
+ }
466
+ ```
467
+
468
+ <!--
469
+ ## Glossary
470
+
471
+ *Clearly define terms in order to be accessible across audiences.*
472
+ -->
473
+
474
+ <!--
475
+ ## Model Card Authors
476
+
477
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
478
+ -->
479
+
480
+ <!--
481
+ ## Model Card Contact
482
+
483
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
484
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "output/matryoshka_nli_v4fromv3_output-matryoshka_nli_v3fromv1_output-matryoshkav1_11000-2024-07-06_22-30-55-checkpoint-1200-2024-07-07_12-56-26/checkpoint-2700",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.39.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 64000
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.3",
5
+ "pytorch": "2.2.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af205c762996d872f6edee7c9ac4ea72cac082d6f8f9d1372a5206b807b129a3
3
+ size 540795752
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "5": {
44
+ "content": "[رابط]",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": true,
49
+ "special": true
50
+ },
51
+ "6": {
52
+ "content": "[بريد]",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": true,
57
+ "special": true
58
+ },
59
+ "7": {
60
+ "content": "[مستخدم]",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": true,
65
+ "special": true
66
+ }
67
+ },
68
+ "clean_up_tokenization_spaces": true,
69
+ "cls_token": "[CLS]",
70
+ "do_basic_tokenize": true,
71
+ "do_lower_case": false,
72
+ "mask_token": "[MASK]",
73
+ "max_len": 512,
74
+ "max_length": 512,
75
+ "model_max_length": 512,
76
+ "never_split": [
77
+ "[بريد]",
78
+ "[مستخدم]",
79
+ "[رابط]"
80
+ ],
81
+ "pad_to_multiple_of": null,
82
+ "pad_token": "[PAD]",
83
+ "pad_token_type_id": 0,
84
+ "padding_side": "right",
85
+ "sep_token": "[SEP]",
86
+ "stride": 0,
87
+ "strip_accents": null,
88
+ "tokenize_chinese_chars": true,
89
+ "tokenizer_class": "BertTokenizer",
90
+ "truncation_side": "right",
91
+ "truncation_strategy": "longest_first",
92
+ "unk_token": "[UNK]"
93
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff