File size: 4,165 Bytes
4b7e30f c03d5cc 0706687 4b7e30f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8885
- name: F1
type: f1
value: 0.8818845305609924
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.892
verified: true
- name: Precision Macro
type: precision
value: 0.8923475194643138
verified: true
- name: Precision Micro
type: precision
value: 0.892
verified: true
- name: Precision Weighted
type: precision
value: 0.894495118514709
verified: true
- name: Recall Macro
type: recall
value: 0.768240931585822
verified: true
- name: Recall Micro
type: recall
value: 0.892
verified: true
- name: Recall Weighted
type: recall
value: 0.892
verified: true
- name: F1 Macro
type: f1
value: 0.7897026729904524
verified: true
- name: F1 Micro
type: f1
value: 0.892
verified: true
- name: F1 Weighted
type: f1
value: 0.8842367889371163
verified: true
- name: loss
type: loss
value: 0.34626322984695435
verified: true
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: validation
metrics:
- name: Accuracy
type: accuracy
value: 0.8885
verified: true
- name: Precision Macro
type: precision
value: 0.8849064522901132
verified: true
- name: Precision Micro
type: precision
value: 0.8885
verified: true
- name: Precision Weighted
type: precision
value: 0.8922726271705158
verified: true
- name: Recall Macro
type: recall
value: 0.7854833401719518
verified: true
- name: Recall Micro
type: recall
value: 0.8885
verified: true
- name: Recall Weighted
type: recall
value: 0.8885
verified: true
- name: F1 Macro
type: f1
value: 0.8031492596189961
verified: true
- name: F1 Micro
type: f1
value: 0.8885
verified: true
- name: F1 Weighted
type: f1
value: 0.8818845305609924
verified: true
- name: loss
type: loss
value: 0.36373236775398254
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3663
- Accuracy: 0.8885
- F1: 0.8819
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 125 | 0.5574 | 0.822 | 0.7956 |
| 0.7483 | 2.0 | 250 | 0.3663 | 0.8885 | 0.8819 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.1+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|