--- license: apache-2.0 base_model: Abdalla312/wav2vec2-base-finetuned-ks tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9999221365724519 --- # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [Abdalla312/wav2vec2-base-finetuned-ks](https://huggingface.co./Abdalla312/wav2vec2-base-finetuned-ks) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0003 - Accuracy: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0069 | 1.0 | 511 | 0.0376 | 0.9914 | | 0.0 | 2.0 | 1023 | 0.0003 | 0.9999 | | 0.0 | 3.0 | 1533 | 0.0006 | 0.9999 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2