Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +96 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 247.17 +/- 24.69
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x784445539d00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x784445539da0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x784445539e40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x784445539ee0>", "_build": "<function ActorCriticPolicy._build at 0x784445539f80>", "forward": "<function ActorCriticPolicy.forward at 0x78444553a020>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78444553a0c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78444553a160>", "_predict": "<function ActorCriticPolicy._predict at 0x78444553a200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78444553a2a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78444553a340>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78444553a3e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7844454a9d80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1737962459930071183, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG54to8IRiCMAWyUTWgBjAF0lEdAkJrOB19v0nV9lChoBkdAQv9dLQHAymgHS7RoCEdAkJw/FR51NnV9lChoBkdAcFWD7qIJq2gHTSMBaAhHQJCwjIn0Cih1fZQoaAZHQHAPhqsU7CBoB004AWgIR0CQsXRRdhRZdX2UKGgGR0BxRyqwQlKLaAdNHwFoCEdAkLKGQGOdXnV9lChoBkdAbxxEofCAMGgHTToBaAhHQJCzGP1ct5F1fZQoaAZHQG3cmEwnH/9oB01TAWgIR0CQs2yzXz19dX2UKGgGR0BsO6/VRUFTaAdNPQFoCEdAkLQjZUT+N3V9lChoBkdAYTv8FY+0PmgHTegDaAhHQJC2TEDQqqh1fZQoaAZHQG4w2C2+fyxoB01ZAWgIR0CQtqD+zdDZdX2UKGgGR0Bv7yMBIWgwaAdNLwFoCEdAkLfYaDPGAHV9lChoBkdAbNPSHdoFmmgHTSwBaAhHQJC4LTMJQch1fZQoaAZHQHCMnZXdTHdoB01KAWgIR0CQuGSvkiljdX2UKGgGR0BySvdepn6EaAdNTAFoCEdAkLnEPDpC8nV9lChoBkdAcbq57PY4AGgHTUsBaAhHQJC7SMn7YTV1fZQoaAZHQD4tFCswL3NoB0v6aAhHQJC76hWYF7l1fZQoaAZHQG/quuq3mV9oB00vAWgIR0CQu/KQaJhwdX2UKGgGR0BwrI8JUo8ZaAdN/gFoCEdAkLyF9a2Wp3V9lChoBkdAcrphEBsAN2gHTWkBaAhHQJC88qx1PnB1fZQoaAZHQHFRfsE7nxJoB02AA2gIR0CQvPMKkVN6dX2UKGgGR0BwwBsXSBsiaAdNLwFoCEdAkL033Dej23V9lChoBkdAccMbypaRp2gHTT8BaAhHQJC9P3TNMXd1fZQoaAZHQHI1WGEf1YhoB003AWgIR0CQviwaR6njdX2UKGgGR0BsfybrkbPyaAdNUwJoCEdAkL/olyBClnV9lChoBkdAcdKoWYWtVGgHTUYBaAhHQJDAIlfJFLF1fZQoaAZHQHFGvN3W4ExoB01JAWgIR0CQwHRNh3JQdX2UKGgGR0BwZ7Qv6CUYaAdNQAFoCEdAkME1/DtPYXV9lChoBkdAcUwa/ATIvWgHTTkBaAhHQJDBS6BiCrd1fZQoaAZHQG0db+kxh2JoB00/AWgIR0CQwaKBNEgGdX2UKGgGR0Bx5sI1LrX2aAdNAAFoCEdAkMJSqlxffHV9lChoBkdAbhNh6Skj5mgHTTYBaAhHQJDCmKIi1Rd1fZQoaAZHQG2u6Pjn3cpoB00PAWgIR0CQw1httQ9BdX2UKGgGR0BwZK64Ds+naAdNNQFoCEdAkMR62v0ROHV9lChoBkdAcNZQ+lj3EmgHTRMBaAhHQJDE0lolD4R1fZQoaAZHQHJSbtmcvuhoB01GAWgIR0CQxaOcDr7gdX2UKGgGR0BxbUZhrnDBaAdNCQFoCEdAkMWruDzy0HV9lChoBkdAcCAcxj8UEmgHTUkBaAhHQJDGJppN9IB1fZQoaAZHQHApVN1yNn5oB01KAWgIR0CQxngzxgAqdX2UKGgGR0BttFh3JPqLaAdNWAFoCEdAkMaVGLDQ7nV9lChoBkdAchZl+Vkc0mgHTT8BaAhHQJDJVVzZHut1fZQoaAZHQHF/PthNM49oB00/AWgIR0CQybjFQ2uQdX2UKGgGR0Bw9/R7Z39raAdNKgFoCEdAkMn//vOQhnV9lChoBkdAcuW0q6OHWWgHTTwBaAhHQJDKcBOpKjB1fZQoaAZHQHGpGxUvPC5oB00wAWgIR0CQyozyBkI5dX2UKGgGR0Bwlvy/bj95aAdNQAFoCEdAkMu/k/8l5XV9lChoBkdAbGLAoG6f8WgHTSkBaAhHQJDMFKEnLJV1fZQoaAZHQHHmjbSJCSloB01aAWgIR0CQzLm29crzdX2UKGgGR0Byf8HbAUL2aAdNNAFoCEdAkM3K1TisGXV9lChoBkdAcGoRAbADaGgHTU8BaAhHQJDOSEvkBCF1fZQoaAZHQHA+/m9xp+NoB008AWgIR0CQzuyup0fYdX2UKGgGR0ByI0xdpqREaAdNPgFoCEdAkM8CMHbAUXV9lChoBkdAbqk/N7jT8mgHTTcBaAhHQJDPi/gzguR1fZQoaAZHQHEZhnanJkpoB01GAWgIR0CQz6d/axoqdX2UKGgGR0BvPJ1vES/TaAdNPAFoCEdAkOLfRu0kW3V9lChoBkdAcei/RVp9JGgHTS4CaAhHQJDjOl9Brvd1fZQoaAZHQEISiblRxcVoB0vraAhHQJDjVRzijtZ1fZQoaAZHQHHMH3xnWatoB00iAWgIR0CQ5fFb3XZodX2UKGgGR0BxDSIZZSvUaAdNRQFoCEdAkOYrxmTTv3V9lChoBkdAb6OQSSNfgWgHTU0BaAhHQJDmtJmNBGB1fZQoaAZHQHIaingpBopoB00XAWgIR0CQ5urvLHMmdX2UKGgGR0Bu0QxtYSxraAdNSwFoCEdAkOcVGkN4JXV9lChoBkdAbS+HxjJ+2GgHTSMBaAhHQJDnjOW0JF91fZQoaAZHQHCfe4smOVBoB00pAWgIR0CQ6GJ/XoTxdX2UKGgGR0BygSYNRWLhaAdL+GgIR0CQ6RSy+pOvdX2UKGgGR0BxA16u4gA7aAdNNQFoCEdAkOpUBCD28XV9lChoBkdAcBVad+Xqq2gHTScBaAhHQJDqclY2bXp1fZQoaAZHQHAq55JK8L9oB01qAWgIR0CQ625vtMPCdX2UKGgGR0Bs00lqrR0EaAdNIQFoCEdAkOuyxmkFfXV9lChoBkdAbEok0Jng52gHTS0BaAhHQJDr9fa6BiF1fZQoaAZHQHCQROtW+49oB01HAWgIR0CQ7Fm5DqnndX2UKGgGR0BrVltoBaLXaAdNowFoCEdAkO7/ES/TLHV9lChoBkdAcFZskY4yXWgHTTUBaAhHQJDvWHoHLRt1fZQoaAZHQEoWvC/GlyloB0v4aAhHQJDwJ1nuiN91fZQoaAZHQG3aNuDSPU9oB00/AWgIR0CQ8Iq7ROUMdX2UKGgGR0BwF7/aQFLWaAdNNwFoCEdAkPC3Cbc453V9lChoBkdAcH5sT37DVGgHTUkBaAhHQJDxHGsFMZh1fZQoaAZHQG6fNuLrHENoB01jAWgIR0CQ8SwYtQKsdX2UKGgGR0BsaXcQAdXDaAdNVgFoCEdAkPQGQSzw+nV9lChoBkdAbrHjG1hLG2gHTZQBaAhHQJD0V21UlzF1fZQoaAZHQG7jAp8WsRxoB00aAWgIR0CQ9SJC0F8pdX2UKGgGR0Bxj8Y2sJY1aAdNVQFoCEdAkPVr8zhxYXV9lChoBkdAb9Y+iaiKzmgHTVgBaAhHQJD2gS8J2Md1fZQoaAZHQG5bHQQcxTNoB01VAWgIR0CQ9rKIi1RcdX2UKGgGR0BwQ6/tY0VKaAdNSwFoCEdAkPcHgccU/XV9lChoBkdAcdXiO/+Kj2gHTQ0BaAhHQJD3oI7eVLV1fZQoaAZHQHGq+fEn9ehoB00eAWgIR0CQ+Hb349HMdX2UKGgGR0BwbJ6jWTX8aAdNGgFoCEdAkPmOfNA1N3V9lChoBkdAa+r/YJ3PiWgHTeoBaAhHQJD5zw5NoJ11fZQoaAZHQHELRzFMqSZoB00jAWgIR0CQ+jKa5PM0dX2UKGgGR0Bwbw3n6l+FaAdNRAFoCEdAkPpYlQdjonV9lChoBkdAbr/xiG34K2gHTSoBaAhHQJD6c7bL2Yh1fZQoaAZHQHFQsaCL/CJoB01IAWgIR0CQ+r1y/9HddX2UKGgGR0BvMHqgRK6GaAdNJQNoCEdAkPsmO6unuXV9lChoBkdAcStj1PFefWgHTRABaAhHQJD773evZAZ1fZQoaAZHQGy2Yg7o0Q9oB00vAWgIR0CQ/ihvze41dX2UKGgGR0BsX2r8zhxYaAdNUwFoCEdAkP460QbuMXV9lChoBkdAcCfbhWHUMGgHTU4BaAhHQJD+2Oq//Nt1fZQoaAZHQHI159uxbB5oB00nAWgIR0CQ/zSi/O+qdX2UKGgGR0ByhMdsBQvYaAdNOAFoCEdAkP+Du4PPLXV9lChoBkdAcF3QaJhvzmgHTUYBaAhHQJEAfqFAVwh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c124756cfce2e3f3b5ed2cf5544631f8565c4584a8d962f921377a5e0912e711
|
3 |
+
size 147368
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x784445539d00>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x784445539da0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x784445539e40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x784445539ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x784445539f80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78444553a020>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78444553a0c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78444553a160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78444553a200>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78444553a2a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78444553a340>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78444553a3e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7844454a9d80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1737962459930071183,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": null,
|
33 |
+
"_last_episode_starts": {
|
34 |
+
":type:": "<class 'numpy.ndarray'>",
|
35 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
36 |
+
},
|
37 |
+
"_last_original_obs": null,
|
38 |
+
"_episode_num": 0,
|
39 |
+
"use_sde": false,
|
40 |
+
"sde_sample_freq": -1,
|
41 |
+
"_current_progress_remaining": -0.015808000000000044,
|
42 |
+
"_stats_window_size": 100,
|
43 |
+
"ep_info_buffer": {
|
44 |
+
":type:": "<class 'collections.deque'>",
|
45 |
+
":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG54to8IRiCMAWyUTWgBjAF0lEdAkJrOB19v0nV9lChoBkdAQv9dLQHAymgHS7RoCEdAkJw/FR51NnV9lChoBkdAcFWD7qIJq2gHTSMBaAhHQJCwjIn0Cih1fZQoaAZHQHAPhqsU7CBoB004AWgIR0CQsXRRdhRZdX2UKGgGR0BxRyqwQlKLaAdNHwFoCEdAkLKGQGOdXnV9lChoBkdAbxxEofCAMGgHTToBaAhHQJCzGP1ct5F1fZQoaAZHQG3cmEwnH/9oB01TAWgIR0CQs2yzXz19dX2UKGgGR0BsO6/VRUFTaAdNPQFoCEdAkLQjZUT+N3V9lChoBkdAYTv8FY+0PmgHTegDaAhHQJC2TEDQqqh1fZQoaAZHQG4w2C2+fyxoB01ZAWgIR0CQtqD+zdDZdX2UKGgGR0Bv7yMBIWgwaAdNLwFoCEdAkLfYaDPGAHV9lChoBkdAbNPSHdoFmmgHTSwBaAhHQJC4LTMJQch1fZQoaAZHQHCMnZXdTHdoB01KAWgIR0CQuGSvkiljdX2UKGgGR0BySvdepn6EaAdNTAFoCEdAkLnEPDpC8nV9lChoBkdAcbq57PY4AGgHTUsBaAhHQJC7SMn7YTV1fZQoaAZHQD4tFCswL3NoB0v6aAhHQJC76hWYF7l1fZQoaAZHQG/quuq3mV9oB00vAWgIR0CQu/KQaJhwdX2UKGgGR0BwrI8JUo8ZaAdN/gFoCEdAkLyF9a2Wp3V9lChoBkdAcrphEBsAN2gHTWkBaAhHQJC88qx1PnB1fZQoaAZHQHFRfsE7nxJoB02AA2gIR0CQvPMKkVN6dX2UKGgGR0BwwBsXSBsiaAdNLwFoCEdAkL033Dej23V9lChoBkdAccMbypaRp2gHTT8BaAhHQJC9P3TNMXd1fZQoaAZHQHI1WGEf1YhoB003AWgIR0CQviwaR6njdX2UKGgGR0BsfybrkbPyaAdNUwJoCEdAkL/olyBClnV9lChoBkdAcdKoWYWtVGgHTUYBaAhHQJDAIlfJFLF1fZQoaAZHQHFGvN3W4ExoB01JAWgIR0CQwHRNh3JQdX2UKGgGR0BwZ7Qv6CUYaAdNQAFoCEdAkME1/DtPYXV9lChoBkdAcUwa/ATIvWgHTTkBaAhHQJDBS6BiCrd1fZQoaAZHQG0db+kxh2JoB00/AWgIR0CQwaKBNEgGdX2UKGgGR0Bx5sI1LrX2aAdNAAFoCEdAkMJSqlxffHV9lChoBkdAbhNh6Skj5mgHTTYBaAhHQJDCmKIi1Rd1fZQoaAZHQG2u6Pjn3cpoB00PAWgIR0CQw1httQ9BdX2UKGgGR0BwZK64Ds+naAdNNQFoCEdAkMR62v0ROHV9lChoBkdAcNZQ+lj3EmgHTRMBaAhHQJDE0lolD4R1fZQoaAZHQHJSbtmcvuhoB01GAWgIR0CQxaOcDr7gdX2UKGgGR0BxbUZhrnDBaAdNCQFoCEdAkMWruDzy0HV9lChoBkdAcCAcxj8UEmgHTUkBaAhHQJDGJppN9IB1fZQoaAZHQHApVN1yNn5oB01KAWgIR0CQxngzxgAqdX2UKGgGR0BttFh3JPqLaAdNWAFoCEdAkMaVGLDQ7nV9lChoBkdAchZl+Vkc0mgHTT8BaAhHQJDJVVzZHut1fZQoaAZHQHF/PthNM49oB00/AWgIR0CQybjFQ2uQdX2UKGgGR0Bw9/R7Z39raAdNKgFoCEdAkMn//vOQhnV9lChoBkdAcuW0q6OHWWgHTTwBaAhHQJDKcBOpKjB1fZQoaAZHQHGpGxUvPC5oB00wAWgIR0CQyozyBkI5dX2UKGgGR0Bwlvy/bj95aAdNQAFoCEdAkMu/k/8l5XV9lChoBkdAbGLAoG6f8WgHTSkBaAhHQJDMFKEnLJV1fZQoaAZHQHHmjbSJCSloB01aAWgIR0CQzLm29crzdX2UKGgGR0Byf8HbAUL2aAdNNAFoCEdAkM3K1TisGXV9lChoBkdAcGoRAbADaGgHTU8BaAhHQJDOSEvkBCF1fZQoaAZHQHA+/m9xp+NoB008AWgIR0CQzuyup0fYdX2UKGgGR0ByI0xdpqREaAdNPgFoCEdAkM8CMHbAUXV9lChoBkdAbqk/N7jT8mgHTTcBaAhHQJDPi/gzguR1fZQoaAZHQHEZhnanJkpoB01GAWgIR0CQz6d/axoqdX2UKGgGR0BvPJ1vES/TaAdNPAFoCEdAkOLfRu0kW3V9lChoBkdAcei/RVp9JGgHTS4CaAhHQJDjOl9Brvd1fZQoaAZHQEISiblRxcVoB0vraAhHQJDjVRzijtZ1fZQoaAZHQHHMH3xnWatoB00iAWgIR0CQ5fFb3XZodX2UKGgGR0BxDSIZZSvUaAdNRQFoCEdAkOYrxmTTv3V9lChoBkdAb6OQSSNfgWgHTU0BaAhHQJDmtJmNBGB1fZQoaAZHQHIaingpBopoB00XAWgIR0CQ5urvLHMmdX2UKGgGR0Bu0QxtYSxraAdNSwFoCEdAkOcVGkN4JXV9lChoBkdAbS+HxjJ+2GgHTSMBaAhHQJDnjOW0JF91fZQoaAZHQHCfe4smOVBoB00pAWgIR0CQ6GJ/XoTxdX2UKGgGR0BygSYNRWLhaAdL+GgIR0CQ6RSy+pOvdX2UKGgGR0BxA16u4gA7aAdNNQFoCEdAkOpUBCD28XV9lChoBkdAcBVad+Xqq2gHTScBaAhHQJDqclY2bXp1fZQoaAZHQHAq55JK8L9oB01qAWgIR0CQ625vtMPCdX2UKGgGR0Bs00lqrR0EaAdNIQFoCEdAkOuyxmkFfXV9lChoBkdAbEok0Jng52gHTS0BaAhHQJDr9fa6BiF1fZQoaAZHQHCQROtW+49oB01HAWgIR0CQ7Fm5DqnndX2UKGgGR0BrVltoBaLXaAdNowFoCEdAkO7/ES/TLHV9lChoBkdAcFZskY4yXWgHTTUBaAhHQJDvWHoHLRt1fZQoaAZHQEoWvC/GlyloB0v4aAhHQJDwJ1nuiN91fZQoaAZHQG3aNuDSPU9oB00/AWgIR0CQ8Iq7ROUMdX2UKGgGR0BwF7/aQFLWaAdNNwFoCEdAkPC3Cbc453V9lChoBkdAcH5sT37DVGgHTUkBaAhHQJDxHGsFMZh1fZQoaAZHQG6fNuLrHENoB01jAWgIR0CQ8SwYtQKsdX2UKGgGR0BsaXcQAdXDaAdNVgFoCEdAkPQGQSzw+nV9lChoBkdAbrHjG1hLG2gHTZQBaAhHQJD0V21UlzF1fZQoaAZHQG7jAp8WsRxoB00aAWgIR0CQ9SJC0F8pdX2UKGgGR0Bxj8Y2sJY1aAdNVQFoCEdAkPVr8zhxYXV9lChoBkdAb9Y+iaiKzmgHTVgBaAhHQJD2gS8J2Md1fZQoaAZHQG5bHQQcxTNoB01VAWgIR0CQ9rKIi1RcdX2UKGgGR0BwQ6/tY0VKaAdNSwFoCEdAkPcHgccU/XV9lChoBkdAcdXiO/+Kj2gHTQ0BaAhHQJD3oI7eVLV1fZQoaAZHQHGq+fEn9ehoB00eAWgIR0CQ+Hb349HMdX2UKGgGR0BwbJ6jWTX8aAdNGgFoCEdAkPmOfNA1N3V9lChoBkdAa+r/YJ3PiWgHTeoBaAhHQJD5zw5NoJ11fZQoaAZHQHELRzFMqSZoB00jAWgIR0CQ+jKa5PM0dX2UKGgGR0Bwbw3n6l+FaAdNRAFoCEdAkPpYlQdjonV9lChoBkdAbr/xiG34K2gHTSoBaAhHQJD6c7bL2Yh1fZQoaAZHQHFQsaCL/CJoB01IAWgIR0CQ+r1y/9HddX2UKGgGR0BvMHqgRK6GaAdNJQNoCEdAkPsmO6unuXV9lChoBkdAcStj1PFefWgHTRABaAhHQJD773evZAZ1fZQoaAZHQGy2Yg7o0Q9oB00vAWgIR0CQ/ihvze41dX2UKGgGR0BsX2r8zhxYaAdNUwFoCEdAkP460QbuMXV9lChoBkdAcCfbhWHUMGgHTU4BaAhHQJD+2Oq//Nt1fZQoaAZHQHI159uxbB5oB00nAWgIR0CQ/zSi/O+qdX2UKGgGR0ByhMdsBQvYaAdNOAFoCEdAkP+Du4PPLXV9lChoBkdAcF3QaJhvzmgHTUYBaAhHQJEAfqFAVwh1ZS4="
|
46 |
+
},
|
47 |
+
"ep_success_buffer": {
|
48 |
+
":type:": "<class 'collections.deque'>",
|
49 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
50 |
+
},
|
51 |
+
"_n_updates": 248,
|
52 |
+
"observation_space": {
|
53 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
54 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
55 |
+
"dtype": "float32",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_shape": [
|
59 |
+
8
|
60 |
+
],
|
61 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
62 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
63 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
64 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
65 |
+
"_np_random": null
|
66 |
+
},
|
67 |
+
"action_space": {
|
68 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
69 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
70 |
+
"n": "4",
|
71 |
+
"start": "0",
|
72 |
+
"_shape": [],
|
73 |
+
"dtype": "int64",
|
74 |
+
"_np_random": null
|
75 |
+
},
|
76 |
+
"n_envs": 1,
|
77 |
+
"n_steps": 1024,
|
78 |
+
"gamma": 0.999,
|
79 |
+
"gae_lambda": 0.98,
|
80 |
+
"ent_coef": 0.01,
|
81 |
+
"vf_coef": 0.5,
|
82 |
+
"max_grad_norm": 0.5,
|
83 |
+
"batch_size": 64,
|
84 |
+
"n_epochs": 4,
|
85 |
+
"clip_range": {
|
86 |
+
":type:": "<class 'function'>",
|
87 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
88 |
+
},
|
89 |
+
"clip_range_vf": null,
|
90 |
+
"normalize_advantage": true,
|
91 |
+
"target_kl": null,
|
92 |
+
"lr_schedule": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
95 |
+
}
|
96 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5695173b305c03bb8cd09f7190376e07d9f939a9d2eac5eeebc86c8006e17f7a
|
3 |
+
size 88490
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a58d92660925b7feca8428f0bbf5def0c8eeb6cfc9226c158e43f05fdd2d128
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.11.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (159 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 247.17394682838375, "std_reward": 24.69127903631646, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-27T07:56:38.583946"}
|