File size: 4,881 Bytes
4c24ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# ############################################################################
# Model: E2E ASR with attention-based ASR
# Training data: All Finnish
# Encoder: CRDNN
# Decoder: GRU + beamsearch
# Authors: Aku Rouhe 2022
# ############################################################################

num_units: 5000
tokenizer: !new:sentencepiece.SentencePieceProcessor

# Feature parameters
sample_rate: 16000
n_fft: 400
n_mels: 40

# Model parameters
activation: !name:torch.nn.LeakyReLU
dropout: 0.15
cnn_blocks: 2
cnn_channels: (64, 128)
inter_layer_pooling_size: (2, 2)
cnn_kernelsize: (3, 3)
time_pooling_size: 4
rnn_class: !name:speechbrain.nnet.RNN.LSTM
rnn_layers: 3
rnn_neurons: 512
rnn_bidirectional: True
dnn_blocks: 1
dnn_neurons: 512
emb_size: 128
dec_neurons: 1024
dec_layers: 1
output_neurons: !ref <num_units>  

unk_index: 1 
blank_index: 0
pad_index: 0
bos_index: 1
eos_index: 2

min_decode_ratio: 0.0
max_decode_ratio: 1.0
valid_beam_size: 4
test_beam_size: 8
eos_threshold: 1.2
using_max_attn_shift: False
max_attn_shift: 240
ctc_weight_decode: 0.0
coverage_penalty: 3.0 
temperature: 1.5 

# Feature extraction
compute_features: !new:speechbrain.lobes.features.Fbank
    sample_rate: !ref <sample_rate>
    n_fft: !ref <n_fft>
    n_mels: !ref <n_mels>

# Feature normalization (mean and std)
normalize: !new:speechbrain.processing.features.InputNormalization
    norm_type: global
    update_until_epoch: -1

# The CRDNN model is an encoder that combines CNNs, RNNs, and DNNs.
encoder: !new:speechbrain.lobes.models.CRDNN.CRDNN
    input_shape: [null, null, !ref <n_mels>]
    activation: !ref <activation>
    dropout: !ref <dropout>
    cnn_blocks: !ref <cnn_blocks>
    cnn_channels: !ref <cnn_channels>
    cnn_kernelsize: !ref <cnn_kernelsize>
    inter_layer_pooling_size: !ref <inter_layer_pooling_size>
    time_pooling: True
    using_2d_pooling: False
    time_pooling_size: !ref <time_pooling_size>
    rnn_class: !ref <rnn_class>
    rnn_layers: !ref <rnn_layers>
    rnn_neurons: !ref <rnn_neurons>
    rnn_bidirectional: !ref <rnn_bidirectional>
    rnn_re_init: True
    dnn_blocks: !ref <dnn_blocks>
    dnn_neurons: !ref <dnn_neurons>
    use_rnnp: False

# Embedding (from indexes to an embedding space of dimension emb_size).
embedding: !new:speechbrain.nnet.embedding.Embedding
    num_embeddings: !ref <output_neurons>
    embedding_dim: !ref <emb_size>

# Attention-based RNN decoder.
decoder: !new:speechbrain.nnet.RNN.AttentionalRNNDecoder
    enc_dim: !ref <dnn_neurons>
    input_size: !ref <emb_size>
    rnn_type: gru
    attn_type: location
    hidden_size: !ref <dec_neurons>
    attn_dim: 2048
    num_layers: !ref <dec_layers>
    scaling: 1.0
    channels: 10
    kernel_size: 100
    re_init: True
    dropout: !ref <dropout>

# Linear transformation on the top of the encoder.
ctc_lin: !new:speechbrain.nnet.linear.Linear
    input_size: !ref <dnn_neurons>
    n_neurons: !ref <output_neurons>

# Linear transformation on the top of the decoder.
seq_lin: !new:speechbrain.nnet.linear.Linear
    input_size: !ref <dec_neurons>
    n_neurons: !ref <output_neurons>

# Final softmax (for log posteriors computation).
log_softmax: !new:speechbrain.nnet.activations.Softmax
    apply_log: True

# Cost definition for the CTC part.
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
    blank_index: !ref <blank_index>

full_encode_step: !new:speechbrain.nnet.containers.LengthsCapableSequential
    input_shape: [null, null, !ref <n_mels>]
    compute_features: !ref <compute_features>
    normalize: !ref <normalize>
    model: !ref <encoder>

# Gathering all the submodels in a single model object.
model: !new:torch.nn.ModuleList
    - - !ref <encoder>
      - !ref <embedding>
      - !ref <decoder>
      - !ref <ctc_lin>
      - !ref <seq_lin>

test_search: !new:speechbrain.decoders.S2SRNNBeamSearcher
    embedding: !ref <embedding>
    decoder: !ref <decoder>
    linear: !ref <seq_lin>
    ctc_linear: !ref <ctc_lin>
    bos_index: !ref <bos_index>
    eos_index: !ref <eos_index>
    blank_index: !ref <blank_index>
    min_decode_ratio: !ref <min_decode_ratio>
    max_decode_ratio: !ref <max_decode_ratio>
    beam_size: !ref <test_beam_size>
    eos_threshold: !ref <eos_threshold>
    using_max_attn_shift: !ref <using_max_attn_shift>
    max_attn_shift: !ref <max_attn_shift>
    coverage_penalty: !ref <coverage_penalty>
    ctc_weight: !ref <ctc_weight_decode>
    temperature: !ref <temperature>

# Objects in "modules" dict will have their parameters moved to the correct
# device, as well as having train()/eval() called on them by the Brain class
modules:
    encoder: !ref <full_encode_step>
    decoder: !ref <test_search>

pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
    loadables:
        model: !ref <model>
        normalizer: !ref <normalize>
        tokenizer: !ref <tokenizer>