File size: 1,403 Bytes
d67d5d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
library_name: transformers
license: mit
base_model: xlnet-base-cased
tags:
- generated_from_trainer
model-index:
- name: XLtolli
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# XLtolli

This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co./xlnet-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.4737
- eval_accuracy: 0.8635
- eval_f1: 0.8634
- eval_runtime: 1328.1503
- eval_samples_per_second: 78.779
- eval_steps_per_second: 0.788
- epoch: 1.5180
- step: 3000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 100
- eval_batch_size: 100
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 300
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- num_epochs: 7
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0