Create modeling_custom_qwen.py
Browse files- modeling_custom_qwen.py +421 -0
modeling_custom_qwen.py
ADDED
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Qwen2Config, Qwen2ForCausalLM
|
2 |
+
import torch
|
3 |
+
import requests
|
4 |
+
from bs4 import BeautifulSoup
|
5 |
+
from duckduckgo_search import DDGS
|
6 |
+
import logging
|
7 |
+
import re
|
8 |
+
|
9 |
+
# ログの設定
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
|
12 |
+
class CustomQwen2Config(Qwen2Config):
|
13 |
+
model_type = "custom_qwen2config"
|
14 |
+
|
15 |
+
def __init__(self, **kwargs):
|
16 |
+
super().__init__(**kwargs)
|
17 |
+
|
18 |
+
@classmethod
|
19 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
20 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
21 |
+
config = super().from_dict(config_dict, **kwargs)
|
22 |
+
return config
|
23 |
+
|
24 |
+
def to_dict(self):
|
25 |
+
output = super().to_dict()
|
26 |
+
output["model_type"] = self.model_type
|
27 |
+
return output
|
28 |
+
|
29 |
+
class CustomQwen2Model(Qwen2ForCausalLM):
|
30 |
+
config_class = CustomQwen2Config
|
31 |
+
|
32 |
+
def __init__(self, config):
|
33 |
+
super().__init__(config)
|
34 |
+
self.tokenizer = None
|
35 |
+
self.embedding_model = None
|
36 |
+
self.max_iterations = 5 # Maximum number of times to recreate keywords
|
37 |
+
self.use_search = True
|
38 |
+
self.top_k = 3 # of documents to retrieve for each search
|
39 |
+
self.max_search_attempts = 3 # of search attempts for each keyword
|
40 |
+
|
41 |
+
def set_tokenizer(self, tokenizer=None):
|
42 |
+
self.tokenizer = tokenizer
|
43 |
+
|
44 |
+
# パラメータ設定メソッド
|
45 |
+
def set_max_iterations(self, max_iterations):
|
46 |
+
self.max_iterations = max_iterations
|
47 |
+
|
48 |
+
def set_use_search(self, use_search):
|
49 |
+
self.use_search = use_search
|
50 |
+
|
51 |
+
def set_top_k(self, top_k):
|
52 |
+
self.top_k = top_k
|
53 |
+
|
54 |
+
def generate_step(self, input_ids, max_new_tokens=150):
|
55 |
+
"""
|
56 |
+
Generates output from input_ids and returns tokenized output.
|
57 |
+
"""
|
58 |
+
input_ids = input_ids.to(self.device)
|
59 |
+
output_ids = super().generate(input_ids, max_new_tokens=max_new_tokens)
|
60 |
+
return output_ids # Return tokenized results
|
61 |
+
|
62 |
+
def extract_response(self, output_ids, keyword):
|
63 |
+
"""
|
64 |
+
Extracts the tokens following a specific keyword from the generated response.
|
65 |
+
Returns extracted text.
|
66 |
+
"""
|
67 |
+
# Decode generated output to text
|
68 |
+
raw_response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
69 |
+
|
70 |
+
# Extract text after keywords
|
71 |
+
pattern = rf"{re.escape(keyword)}\s*(.*)"
|
72 |
+
match = re.search(pattern, raw_response, re.DOTALL)
|
73 |
+
|
74 |
+
if match:
|
75 |
+
# Return matched parts
|
76 |
+
extracted_text = match.group(1).strip()
|
77 |
+
return extracted_text
|
78 |
+
else:
|
79 |
+
# Return empty string if keyword not found
|
80 |
+
return "[ALL]" + raw_response
|
81 |
+
|
82 |
+
def generate(self, input_ids, max_new_tokens=150, **kwargs):
|
83 |
+
logging.info(f"Maximum keyword regeneration attempts: {self.max_iterations}")
|
84 |
+
logging.info(f"External URL reference: {'Enabled' if self.use_search else 'Disabled'}")
|
85 |
+
logging.info(f"k_top value: {self.top_k}")
|
86 |
+
|
87 |
+
org_instruction = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
88 |
+
|
89 |
+
# of attempts to re-create keywords
|
90 |
+
keyword_attempt = 0
|
91 |
+
sufficient_info = False
|
92 |
+
summarized_info = ""
|
93 |
+
|
94 |
+
while keyword_attempt < self.max_iterations and not sufficient_info:
|
95 |
+
logging.info(f"Keyword regeneration attempt: {keyword_attempt + 1}/{self.max_iterations}")
|
96 |
+
|
97 |
+
# When using external references
|
98 |
+
if self.use_search:
|
99 |
+
logging.info("Retrieving relevant information using external URL references...")
|
100 |
+
for search_attempt in range(1, self.max_search_attempts + 1):
|
101 |
+
logging.info(f"Search attempt: {search_attempt}/{self.max_search_attempts}")
|
102 |
+
relevant_docs = self.retrieve_relevant_information(org_instruction, top_k=self.top_k)
|
103 |
+
summarized_info = self.summarize_documents(relevant_docs, org_instruction)
|
104 |
+
|
105 |
+
# Determine whether to accept or reject the answer.
|
106 |
+
sufficient_info = self.is_answer_sufficient(summarized_info, org_instruction)
|
107 |
+
if sufficient_info:
|
108 |
+
logging.info("Sufficient information found.")
|
109 |
+
break
|
110 |
+
else:
|
111 |
+
logging.info("Insufficient information. Attempting next search.")
|
112 |
+
|
113 |
+
if not sufficient_info:
|
114 |
+
# Regenerate keywords
|
115 |
+
new_keywords = self.generate_new_keywords(org_instruction)
|
116 |
+
if new_keywords:
|
117 |
+
org_instruction = self.update_instruction_with_new_keywords(org_instruction, new_keywords)
|
118 |
+
logging.info(f"Retrying search with new keywords: {new_keywords}")
|
119 |
+
else:
|
120 |
+
logging.warning("Failed to generate new keywords.")
|
121 |
+
break
|
122 |
+
|
123 |
+
else:
|
124 |
+
summarized_info = ""
|
125 |
+
sufficient_info = False
|
126 |
+
|
127 |
+
keyword_attempt += 1
|
128 |
+
|
129 |
+
if not sufficient_info:
|
130 |
+
logging.info("Relevant data sources not found. Performing self-reasoning.")
|
131 |
+
final_response = self.self_reasoning(org_instruction, max_new_tokens)
|
132 |
+
else:
|
133 |
+
# Perform normal answer generation process
|
134 |
+
final_response = self.generate_answer(org_instruction, summarized_info, max_new_tokens)
|
135 |
+
|
136 |
+
# Return final answer
|
137 |
+
final_response_ids = self.tokenizer.encode(final_response, return_tensors="pt").to(self.device)
|
138 |
+
return final_response_ids
|
139 |
+
|
140 |
+
def retrieve_relevant_information(self, user_input, top_k=3):
|
141 |
+
search_query = self.generate_search_query(user_input)
|
142 |
+
logging.info(f"Generated search query: {search_query}")
|
143 |
+
|
144 |
+
if not search_query:
|
145 |
+
logging.warning("Search query is empty.")
|
146 |
+
return ["No relevant information found."]
|
147 |
+
|
148 |
+
with DDGS() as ddgs:
|
149 |
+
search_results = ddgs.text(
|
150 |
+
keywords=search_query,
|
151 |
+
region='wt-wt',
|
152 |
+
safesearch='off',
|
153 |
+
timelimit=None,
|
154 |
+
max_results=20
|
155 |
+
)
|
156 |
+
search_results = list(search_results)
|
157 |
+
|
158 |
+
if not search_results:
|
159 |
+
return ["No relevant information found."]
|
160 |
+
|
161 |
+
# Filtering search results
|
162 |
+
documents = []
|
163 |
+
for result in search_results:
|
164 |
+
if 'body' in result and result['body']:
|
165 |
+
documents.append(result['body'])
|
166 |
+
elif 'snippet' in result and result['snippet']:
|
167 |
+
documents.append(result['snippet'])
|
168 |
+
|
169 |
+
# Select top k documents
|
170 |
+
documents = documents[:top_k]
|
171 |
+
return documents
|
172 |
+
|
173 |
+
def generate_search_query(self, user_input):
|
174 |
+
"""
|
175 |
+
Generates a search query using the model's inference.
|
176 |
+
"""
|
177 |
+
# Create prompt
|
178 |
+
prompt = f"""
|
179 |
+
User's question:
|
180 |
+
{user_input}
|
181 |
+
|
182 |
+
Organize what you need to know to answer this problem and list three keywords to research.
|
183 |
+
|
184 |
+
Keywords:
|
185 |
+
-"""
|
186 |
+
# Encode prompt
|
187 |
+
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(self.device)
|
188 |
+
# Generate output from model
|
189 |
+
output_ids = self.generate_step(input_ids, max_new_tokens=50)
|
190 |
+
# Extract keywords from output
|
191 |
+
generated_text = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
192 |
+
# Extract keyword section
|
193 |
+
pattern = r"Keywords:\s*(.*)" # Changed from "Keywords:\s*(.*)"
|
194 |
+
match = re.search(pattern, generated_text, re.DOTALL)
|
195 |
+
if match:
|
196 |
+
keywords_text = match.group(1).strip()
|
197 |
+
# Listify keywords
|
198 |
+
keywords = re.findall(r"-\s*(.*)", keywords_text)
|
199 |
+
search_query = ' '.join(keywords)
|
200 |
+
logging.info(f"Generated search query: {search_query}")
|
201 |
+
return search_query
|
202 |
+
else:
|
203 |
+
logging.warning("Failed to generate keywords.")
|
204 |
+
return ""
|
205 |
+
|
206 |
+
def generate_new_keywords(self, user_input):
|
207 |
+
"""
|
208 |
+
Attempts to regenerate keywords.
|
209 |
+
"""
|
210 |
+
prompt = f"""
|
211 |
+
User's question:
|
212 |
+
{user_input}
|
213 |
+
|
214 |
+
Insufficient information was obtained. Please generate new keywords.
|
215 |
+
List three new keywords.
|
216 |
+
|
217 |
+
Keywords:
|
218 |
+
-"""
|
219 |
+
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(self.device)
|
220 |
+
output_ids = self.generate_step(input_ids, max_new_tokens=50)
|
221 |
+
generated_text = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
222 |
+
pattern = r"Keywords:\s*(.*)" # Changed from "Keywords:\s*(.*)"
|
223 |
+
match = re.search(pattern, generated_text, re.DOTALL)
|
224 |
+
if match:
|
225 |
+
keywords_text = match.group(1).strip()
|
226 |
+
keywords = re.findall(r"-\s*(.*)", keywords_text)
|
227 |
+
search_query = ' '.join(keywords)
|
228 |
+
logging.info(f"Regenerated search query: {search_query}")
|
229 |
+
return search_query
|
230 |
+
else:
|
231 |
+
logging.warning("Failed to extract regenerated keywords.")
|
232 |
+
return ""
|
233 |
+
|
234 |
+
def update_instruction_with_new_keywords(self, instruction, new_keywords):
|
235 |
+
"""
|
236 |
+
Incorporates new keywords into the original instruction.
|
237 |
+
"""
|
238 |
+
# Simply appends new keywords to the original instruction.
|
239 |
+
updated_instruction = f"{instruction} Keywords: {new_keywords}"
|
240 |
+
return updated_instruction
|
241 |
+
|
242 |
+
def is_answer_sufficient(self, summarized_info, user_input):
|
243 |
+
"""
|
244 |
+
Determines if the summarized information is sufficient to answer the question.
|
245 |
+
"""
|
246 |
+
prompt = f"""
|
247 |
+
User's question:
|
248 |
+
{user_input}
|
249 |
+
|
250 |
+
Retrieved information:
|
251 |
+
{summarized_info}
|
252 |
+
|
253 |
+
Based on this information, determine if you can answer the user's question.
|
254 |
+
If yes, respond with "Yes". If no, respond with "No" only.
|
255 |
+
"""
|
256 |
+
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(self.device)
|
257 |
+
output_ids = self.generate_step(input_ids, max_new_tokens=10)
|
258 |
+
generated_text = self.tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
|
259 |
+
|
260 |
+
if "Yes" in generated_text:
|
261 |
+
return True
|
262 |
+
else:
|
263 |
+
return False
|
264 |
+
|
265 |
+
def generate_answer(self, user_input, summarized_info, max_new_tokens=150):
|
266 |
+
"""
|
267 |
+
Generates an answer based on the retrieved information.
|
268 |
+
"""
|
269 |
+
# Step 1: Understanding the question and extracting key points
|
270 |
+
step1_prompt = f"""
|
271 |
+
#User's question:
|
272 |
+
{user_input}
|
273 |
+
|
274 |
+
#Step 1: Understanding the question and extracting key points
|
275 |
+
Accurately understand the user's question or instructions.
|
276 |
+
Output the rules for answering and the tasks to be performed in a bullet list.
|
277 |
+
|
278 |
+
#Rules for answering and tasks to be performed:
|
279 |
+
"""
|
280 |
+
step1_input_ids = self.tokenizer.encode(step1_prompt, return_tensors="pt").to(self.device)
|
281 |
+
outputs_step1 = self.generate_step(step1_input_ids, max_new_tokens=max_new_tokens)
|
282 |
+
step1_response = self.extract_response(outputs_step1, "#Rules for answering and tasks to be performed:")
|
283 |
+
logging.info("Understanding the question...\n======================\n" + step1_response)
|
284 |
+
|
285 |
+
# Step 2: Considerations for problem-solving
|
286 |
+
step2_prompt = f"""
|
287 |
+
#Step 2: Considerations for problem-solving
|
288 |
+
Based on the content of Step 1, consider approaches and necessary information for solving the problem.
|
289 |
+
|
290 |
+
#Step 2 response:
|
291 |
+
"""
|
292 |
+
step2_input_ids = self.tokenizer.encode(step1_response + step2_prompt, return_tensors="pt").to(self.device)
|
293 |
+
outputs_step2 = self.generate_step(step2_input_ids, max_new_tokens=max_new_tokens)
|
294 |
+
step2_response = self.extract_response(outputs_step2, "#Step 2 response:")
|
295 |
+
logging.info("Considering approaches for problem-solving...\n======================\n" + step2_response)
|
296 |
+
|
297 |
+
# Step 3: Creating the initial answer
|
298 |
+
step3_prompt = f"""
|
299 |
+
#Step 3: Creating the initial answer
|
300 |
+
Based on the content so far, create an initial answer to the user's question.
|
301 |
+
Your information may not be up-to-date. Fully consider information from the internet.
|
302 |
+
|
303 |
+
#Latest internet information:
|
304 |
+
{summarized_info}
|
305 |
+
|
306 |
+
#Initial answer:
|
307 |
+
"""
|
308 |
+
step3_input_ids = self.tokenizer.encode(step2_response + step3_prompt, return_tensors="pt").to(self.device)
|
309 |
+
outputs_step3 = self.generate_step(step3_input_ids, max_new_tokens=max_new_tokens)
|
310 |
+
step3_response = self.extract_response(outputs_step3, "#Initial answer:")
|
311 |
+
logging.info("Creating the initial answer...\n======================\n" + step3_response)
|
312 |
+
|
313 |
+
# Step 4: Reflection (Self-verification)
|
314 |
+
reflection_prompt = f"""
|
315 |
+
#Step 4: Reflection (Self-verification)
|
316 |
+
Verify whether the initial answer accurately responds to the user's question or instructions, and point out any errors or areas for improvement.
|
317 |
+
Be cautious of overinterpreting the instructions and critically assess whether you have accurately understood them.
|
318 |
+
Your information may not be up-to-date. Fully consider information from the internet.
|
319 |
+
Reconfirm the user's question and provide an accurate answer to the question itself. (Ensure that you provide an answer to the question itself)
|
320 |
+
|
321 |
+
#User's question:
|
322 |
+
{user_input}
|
323 |
+
|
324 |
+
#Latest internet information:
|
325 |
+
{summarized_info}
|
326 |
+
|
327 |
+
#Initial answer:
|
328 |
+
{step3_response}
|
329 |
+
|
330 |
+
#Reflection result:
|
331 |
+
"""
|
332 |
+
reflection_input_ids = self.tokenizer.encode(reflection_prompt, return_tensors="pt").to(self.device)
|
333 |
+
outputs_reflection = self.generate_step(reflection_input_ids, max_new_tokens=max_new_tokens)
|
334 |
+
reflection_response = self.extract_response(outputs_reflection, "#Reflection result:")
|
335 |
+
logging.info("Performing reflection...\n======================\n" + reflection_response)
|
336 |
+
|
337 |
+
# Step 5: Creating the final answer
|
338 |
+
final_prompt = f"""
|
339 |
+
#Step 5: Creating the final answer
|
340 |
+
Based on the reflection results, modify the initial answer as needed.
|
341 |
+
Your knowledge may not be up-to-date. Fully consider information from the internet.
|
342 |
+
Reconfirm the user's question, and check for overinterpretation, misunderstandings, omissions, and careless mistakes.
|
343 |
+
Create the final answer incorporating these.
|
344 |
+
|
345 |
+
#Initial answer:
|
346 |
+
{step3_response}
|
347 |
+
|
348 |
+
#Reflection result:
|
349 |
+
{reflection_response}
|
350 |
+
|
351 |
+
#Latest internet information:
|
352 |
+
{summarized_info}
|
353 |
+
|
354 |
+
#User's question:
|
355 |
+
{user_input}
|
356 |
+
|
357 |
+
Please provide the final answer to the user's question.
|
358 |
+
#Final answer:
|
359 |
+
"""
|
360 |
+
final_input_ids = self.tokenizer.encode(final_prompt, return_tensors="pt").to(self.device)
|
361 |
+
outputs_final = self.generate_step(final_input_ids, max_new_tokens=max_new_tokens)
|
362 |
+
final_response = self.extract_response(outputs_final, "#Final answer:").strip()
|
363 |
+
|
364 |
+
return final_response
|
365 |
+
|
366 |
+
def self_reasoning(self, user_input, max_new_tokens=150):
|
367 |
+
"""
|
368 |
+
Generates an answer based on self-reasoning.
|
369 |
+
"""
|
370 |
+
prompt = f"""
|
371 |
+
User's question:
|
372 |
+
{user_input}
|
373 |
+
|
374 |
+
No relevant information was found on the internet. Please use your own knowledge and reasoning to answer.
|
375 |
+
|
376 |
+
#Answer based on self-reasoning:
|
377 |
+
"""
|
378 |
+
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(self.device)
|
379 |
+
output_ids = self.generate_step(input_ids, max_new_tokens=max_new_tokens)
|
380 |
+
generated_text = self.extract_response(output_ids, "#Answer based on self-reasoning:").strip()
|
381 |
+
logging.info("Answer based on self-reasoning:\n======================\n" + generated_text)
|
382 |
+
return generated_text
|
383 |
+
|
384 |
+
def process_document(self, doc, user_input):
|
385 |
+
"""
|
386 |
+
Determines if each document is relevant to the user's question and generates an answer if applicable.
|
387 |
+
"""
|
388 |
+
# Create prompt
|
389 |
+
prompt = f"""
|
390 |
+
User's question:
|
391 |
+
{user_input}
|
392 |
+
|
393 |
+
Content of the document:
|
394 |
+
{doc[:2000]} # Truncate if too long
|
395 |
+
|
396 |
+
Do not think of the question superficially. Use paradoxes and rephrasing to organize.
|
397 |
+
Create an answer to the question based on the content of this document.
|
398 |
+
Understand the points of disagreement between your own thoughts and the answer you would create based on this document, and prioritize the answer based on the document.
|
399 |
+
|
400 |
+
Answer:
|
401 |
+
"""
|
402 |
+
input_ids = self.tokenizer.encode(prompt, return_tensors='pt').to(self.device)
|
403 |
+
output_ids = self.generate_step(input_ids, max_new_tokens=500)
|
404 |
+
generated_text = self.extract_response(output_ids, "Answer:")
|
405 |
+
logging.info("Document processing result: " + generated_text)
|
406 |
+
# Return empty string if deemed low relevance
|
407 |
+
if "low relevance" in generated_text:
|
408 |
+
return ""
|
409 |
+
else:
|
410 |
+
return generated_text.strip()
|
411 |
+
|
412 |
+
def summarize_documents(self, documents, user_input):
|
413 |
+
"""
|
414 |
+
Processes each document and summarizes relevant information.
|
415 |
+
"""
|
416 |
+
summaries = []
|
417 |
+
for doc in documents:
|
418 |
+
processed_text = self.process_document(doc, user_input)
|
419 |
+
if processed_text:
|
420 |
+
summaries.append(processed_text)
|
421 |
+
return "\n\n".join(summaries)
|