--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: vit-base-oxford-brain-tumor_x-ray results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7692307692307693 - name: Precision type: precision value: 0.7692307692307693 - name: Recall type: recall value: 0.7692307692307693 - name: F1 type: f1 value: 0.7692307692307693 --- # vit-base-oxford-brain-tumor_x-ray This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5912 - Accuracy: 0.7692 - Precision: 0.7692 - Recall: 0.7692 - F1: 0.7692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 20 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6752 | 1.0 | 11 | 0.4894 | 0.76 | 0.7148 | 0.76 | 0.7114 | | 0.5673 | 2.0 | 22 | 0.4630 | 0.72 | 0.57 | 0.72 | 0.6363 | | 0.6173 | 3.0 | 33 | 0.4269 | 0.92 | 0.92 | 0.92 | 0.92 | | 0.5562 | 4.0 | 44 | 0.5047 | 0.84 | 0.8653 | 0.84 | 0.8470 | | 0.5285 | 5.0 | 55 | 0.4036 | 0.92 | 0.92 | 0.92 | 0.92 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1