File size: 2,534 Bytes
9b06f91 6425fa7 9b06f91 6425fa7 9b06f91 6425fa7 9b06f91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: vit-base-oxford-brain-tumor_x-ray
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: Mahadih534/brain-tumor-dataset
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7692307692307693
- name: Precision
type: precision
value: 0.7692307692307693
- name: Recall
type: recall
value: 0.7692307692307693
- name: F1
type: f1
value: 0.7692307692307693
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-oxford-brain-tumor_x-ray
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on the Mahadih534/brain-tumor-dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5912
- Accuracy: 0.7692
- Precision: 0.7692
- Recall: 0.7692
- F1: 0.7692
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 20
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.6752 | 1.0 | 11 | 0.4894 | 0.76 | 0.7148 | 0.76 | 0.7114 |
| 0.5673 | 2.0 | 22 | 0.4630 | 0.72 | 0.57 | 0.72 | 0.6363 |
| 0.6173 | 3.0 | 33 | 0.4269 | 0.92 | 0.92 | 0.92 | 0.92 |
| 0.5562 | 4.0 | 44 | 0.5047 | 0.84 | 0.8653 | 0.84 | 0.8470 |
| 0.5285 | 5.0 | 55 | 0.4036 | 0.92 | 0.92 | 0.92 | 0.92 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|