File size: 1,935 Bytes
3f213f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-de-en
tags:
- generated_from_trainer
datasets:
- wmt16
metrics:
- bleu
model-index:
- name: t5_small-finetuned-de-to-en
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: wmt16
      type: wmt16
      config: de-en
      split: validation
      args: de-en
    metrics:
    - name: Bleu
      type: bleu
      value: 5.5413
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5_small-finetuned-de-to-en

This model is a fine-tuned version of [Helsinki-NLP/opus-mt-de-en](https://huggingface.co./Helsinki-NLP/opus-mt-de-en) on the wmt16 dataset.
It achieves the following results on the evaluation set:
- Loss: 5.1452
- Bleu: 5.5413
- Gen Len: 27.5002

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu   | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| 2.5401        | 1.0   | 3125  | 5.2850          | 4.521  | 28.0959 |
| 2.6412        | 2.0   | 6250  | 5.1799          | 5.2094 | 27.8515 |
| 2.554         | 3.0   | 9375  | 5.1508          | 5.4598 | 27.6353 |
| 2.5307        | 4.0   | 12500 | 5.1452          | 5.5413 | 27.5002 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2