File size: 2,153 Bytes
0b5f953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c21ebd
0b5f953
 
 
 
 
 
 
 
 
7c21ebd
 
0b5f953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnextv2-large-1k-224-finetuned-LungCancer-Classification-LC25000-AH-40-30-30
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: Augmented-Final
      split: train
      args: Augmented-Final
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9433001107419712
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# convnextv2-large-1k-224-finetuned-LungCancer-Classification-LC25000-AH-40-30-30

This model is a fine-tuned version of [facebook/convnextv2-large-1k-224](https://huggingface.co./facebook/convnextv2-large-1k-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1791
- Accuracy: 0.9433

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.254         | 0.99  | 93   | 0.1791          | 0.9433   |
| 0.4225        | 1.99  | 187  | 0.4341          | 0.8297   |
| 0.4801        | 3.0   | 281  | 0.4158          | 0.8890   |
| 0.2558        | 4.0   | 375  | 0.2540          | 0.8952   |
| 0.1809        | 4.96  | 465  | 0.1753          | 0.9358   |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3