--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: ft-wav2vec2-with-minds results: [] --- # ft-wav2vec2-with-minds This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0119 - Accuracy: 0.9972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 120 - eval_batch_size: 120 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 480 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 5.1595 | 1.0 | 9 | 5.2504 | 0.1125 | | 3.706 | 2.0 | 18 | 1.7425 | 0.3261 | | 1.1096 | 3.0 | 27 | 0.5152 | 0.7985 | | 0.3567 | 4.0 | 36 | 0.1222 | 0.9728 | | 0.1645 | 5.0 | 45 | 0.0988 | 0.9850 | | 0.1539 | 6.0 | 54 | 0.0696 | 0.9878 | | 0.1329 | 7.0 | 63 | 0.0783 | 0.9831 | | 0.1023 | 8.0 | 72 | 0.0833 | 0.9841 | | 0.1923 | 9.0 | 81 | 0.0733 | 0.9775 | | 0.108 | 10.0 | 90 | 0.0294 | 0.9934 | | 0.0884 | 11.0 | 99 | 0.0331 | 0.9897 | | 0.1745 | 12.0 | 108 | 0.0288 | 0.9944 | | 0.0793 | 13.0 | 117 | 0.0545 | 0.9869 | | 0.0823 | 14.0 | 126 | 0.0551 | 0.9850 | | 0.0857 | 15.0 | 135 | 0.0401 | 0.9925 | | 0.0738 | 16.0 | 144 | 0.0329 | 0.9906 | | 0.0905 | 17.0 | 153 | 0.0324 | 0.9878 | | 0.1049 | 18.0 | 162 | 0.0379 | 0.9925 | | 0.0775 | 19.0 | 171 | 0.0410 | 0.9906 | | 0.07 | 20.0 | 180 | 0.0315 | 0.9925 | | 0.0519 | 21.0 | 189 | 0.0361 | 0.9897 | | 0.0679 | 22.0 | 198 | 0.0470 | 0.9878 | | 0.0771 | 23.0 | 207 | 0.0258 | 0.9934 | | 0.0588 | 24.0 | 216 | 0.0322 | 0.9934 | | 0.0566 | 25.0 | 225 | 0.0251 | 0.9906 | | 0.0665 | 26.0 | 234 | 0.0162 | 0.9963 | | 0.06 | 27.0 | 243 | 0.0178 | 0.9953 | | 0.0462 | 28.0 | 252 | 0.0183 | 0.9944 | | 0.0527 | 29.0 | 261 | 0.0669 | 0.9831 | | 0.0378 | 30.0 | 270 | 0.0163 | 0.9953 | | 0.0418 | 31.0 | 279 | 0.0207 | 0.9963 | | 0.0335 | 32.0 | 288 | 0.0159 | 0.9953 | | 0.0447 | 33.0 | 297 | 0.0151 | 0.9963 | | 0.0455 | 34.0 | 306 | 0.0161 | 0.9953 | | 0.0368 | 35.0 | 315 | 0.0163 | 0.9944 | | 0.043 | 36.0 | 324 | 0.0136 | 0.9963 | | 0.0361 | 37.0 | 333 | 0.0181 | 0.9963 | | 0.0374 | 38.0 | 342 | 0.0149 | 0.9963 | | 0.0397 | 39.0 | 351 | 0.0119 | 0.9963 | | 0.0329 | 40.0 | 360 | 0.0164 | 0.9953 | | 0.0933 | 41.0 | 369 | 0.0119 | 0.9972 | | 0.0311 | 42.0 | 378 | 0.0144 | 0.9963 | | 0.0325 | 43.0 | 387 | 0.0131 | 0.9963 | | 0.0418 | 44.0 | 396 | 0.0207 | 0.9963 | | 0.0251 | 45.0 | 405 | 0.0178 | 0.9963 | | 0.0409 | 46.0 | 414 | 0.0149 | 0.9953 | | 0.0444 | 47.0 | 423 | 0.0155 | 0.9953 | | 0.0318 | 48.0 | 432 | 0.0169 | 0.9953 | | 0.0465 | 49.0 | 441 | 0.0171 | 0.9953 | | 0.0308 | 50.0 | 450 | 0.0173 | 0.9953 | ### Framework versions - Transformers 4.35.2 - Pytorch 1.12.1+cu116 - Datasets 2.15.0 - Tokenizers 0.15.2