--- library_name: peft license: cc-by-nc-sa-4.0 tags: - medical --- ⚠️⚠️⚠️ Only for research purpose. Do not use it for medical purpose. ⚠️⚠️⚠️ # MedSwallow-70B🏥 [東工大Swallow](https://huggingface.co./tokyotech-llm/Swallow-70b-instruct-hf)をベースモデルとし, 医療Q&AデータセットでInstruction Tuningを施した医療ドメインの日本語LLMです. チューニングには独自で用意した米国医師国家試験(USMLE)を和訳したQ&Aデータセットを用いました. MedSwallow is a Japanese medical LLM for medical question-answering. MedSwallow is based on [Swallow-70B](https://huggingface.co./tokyotech-llm/Swallow-70b-instruct-hf) and has passed instruction tuning with USMLE dataset translated in Japanese by our own. ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0 ## License ライセンスは非商用ライセンスです. Non-commercial. ## Usage ``` model_name = "tokyotech-llm/Swallow-70b-instruct-hf" peft_model= "AIgroup-CVM-utokyohospital/MedSwallow-70b" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) model = AutoModelForCausalLM.from_pretrained( model_name, load_in_8bit=False, torch_dtype=torch.float16, device_map=device, model = PeftModel.from_pretrained( model, peft_model, torch_dtype=torch.float16, device_map=device, ) ``` ## Benchmark See also [Japanese Medical Language Model Evaluation Harness](https://github.com/stardust-coder/japanese-lm-med-harness). - IgakuQA (in English): - IgakuQA (in Japanese): - MedQA (in English) : - MedQA (in Japanese) : ## How to cite ``` coming soon... ```