--- library_name: peft license: llama2 datasets: - izumi-lab/llm-japanese-dataset language: - ja pipeline_tag: text-generation --- # AIgroup-CVM-utokyohospital/Llama-2-70b-chat-4bit-japanese This model is Llama-2-Chat 70B fine-tuned with a part of the following Japanese version of the alpaca dataset. https://huggingface.co./datasets/izumi-lab/llm-japanese-dataset - 10000 steps - batch_size = 4 ## Copyright Notice This model is built on the copyright of Meta's LLaMA. Users of this model must also agree to Meta's license below. https://ai.meta.com/llama/ ## How to use ```python import os os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" import torch torch.cuda.empty_cache() from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoConfig # Load models model_id = "meta-llama/Llama-2-70b-chat-hf" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) config = AutoConfig.from_pretrained(model_id) config.pretraining_tp = 1 #LLama-2-70bなら必要 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map="auto") # Load weights peft_name = "AIgroup-CVM-utokyohospital/Llama-2-70b-chat-4bit-japanese" model_peft = PeftModel.from_pretrained( model, peft_name, device_map="auto" ) model_peft.eval() device = "cuda:0" inputs = tokenizer(text, return_tensors="pt").to(device) with torch.no_grad(): outputs = model.generate(**inputs, temperature=0.0, repetition_penalty=1.00) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) outputs = model_peft.generate(**inputs, temperature=0.0, repetition_penalty=1.00) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Sample Responses ``` ``` ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0