Text Generation
PEFT
Japanese
stardust-coder commited on
Commit
55fc1e4
1 Parent(s): 608d894

Upload model

Browse files
Files changed (3) hide show
  1. README.md +1 -77
  2. adapter_config.json +3 -3
  3. adapter_model.bin +1 -1
README.md CHANGED
@@ -1,82 +1,6 @@
1
  ---
2
  library_name: peft
3
- license: llama2
4
- datasets:
5
- - izumi-lab/llm-japanese-dataset
6
- language:
7
- - ja
8
- pipeline_tag: text-generation
9
  ---
10
- ## AIgroup-CVM-utokyohospital/Llama-2-70b-chat-4bit-japanese
11
-
12
- This model is Llama-2-Chat 70B fine-tuned with a part of the following Japanese dataset.
13
-
14
- [https://huggingface.co/datasets/izumi-lab/llm-japanese-dataset](https://huggingface.co/datasets/izumi-lab/llm-japanese-dataset)
15
-
16
- ```
17
- from datasets import load_dataset
18
- dataset = load_dataset("izumi-lab/llm-japanese-dataset", revision="main")
19
- ```
20
-
21
- - 1000 steps
22
- - batch_size = 4
23
-
24
-
25
- ## Copyright Notice
26
-
27
- This model is built on the copyright of Meta's LLaMA series.
28
-
29
- Users of this model must also agree to Meta's license.
30
-
31
- [https://ai.meta.com/llama/](https://ai.meta.com/llama/)
32
-
33
-
34
- ## How to use
35
-
36
- ```
37
- import os
38
- os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
39
- import torch
40
- torch.cuda.empty_cache()
41
- from peft import PeftModel
42
- from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoConfig
43
-
44
- #Load model
45
- model_id = "meta-llama/Llama-2-70b-chat-hf"
46
- bnb_config = BitsAndBytesConfig(
47
- load_in_4bit=True,
48
- bnb_4bit_use_double_quant=True,
49
- bnb_4bit_quant_type="nf4",
50
- bnb_4bit_compute_dtype=torch.bfloat16
51
- )
52
- config = AutoConfig.from_pretrained(model_id)
53
- config.pretraining_tp = 1
54
- tokenizer = AutoTokenizer.from_pretrained(model_id)
55
- model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config,
56
- device_map="auto")
57
-
58
- #Load weights
59
- peft_name = "AIgroup-CVM-utokyohospital/Llama-2-70b-chat-4bit-japanese"
60
- model_peft = PeftModel.from_pretrained(
61
- model,
62
- peft_name,
63
- device_map="auto"
64
- )
65
- model_peft.eval()
66
-
67
-
68
- device = "cuda:0"
69
-
70
- text = "### Human: 東京大学の住所は? ### Assistant: "
71
- inputs = tokenizer(text, return_tensors="pt").to(device)
72
- with torch.no_grad():
73
- outputs = model.generate(**inputs, max_new_tokens=100)
74
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
75
-
76
- ### Human: 東京大学の住所は? ### Assistant: 東京大学の住所は、東京都文京区本郷7丁目3番1号です。
77
- ```
78
-
79
-
80
  ## Training procedure
81
 
82
 
@@ -93,4 +17,4 @@ The following `bitsandbytes` quantization config was used during training:
93
  ### Framework versions
94
 
95
 
96
- - PEFT 0.4.0
 
1
  ---
2
  library_name: peft
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ## Training procedure
5
 
6
 
 
17
  ### Framework versions
18
 
19
 
20
+ - PEFT 0.4.0
adapter_config.json CHANGED
@@ -14,13 +14,13 @@
14
  "r": 64,
15
  "revision": null,
16
  "target_modules": [
 
17
  "o_proj",
18
- "up_proj",
19
  "v_proj",
20
- "q_proj",
21
  "gate_proj",
 
22
  "down_proj",
23
- "k_proj"
24
  ],
25
  "task_type": "CAUSAL_LM"
26
  }
 
14
  "r": 64,
15
  "revision": null,
16
  "target_modules": [
17
+ "q_proj",
18
  "o_proj",
 
19
  "v_proj",
 
20
  "gate_proj",
21
+ "k_proj",
22
  "down_proj",
23
+ "up_proj"
24
  ],
25
  "task_type": "CAUSAL_LM"
26
  }
adapter_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:388ba0e692c5f4d4a23348378c4a37a760e8fd62ef845b25f405137565a70a61
3
  size 3313905157
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bec19307c7b9c4fab1b1a24910f91845ab3f837f2d0d59de53b346da1edd056f
3
  size 3313905157