Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,136 @@
|
|
1 |
-
---
|
2 |
-
license: llama3.2
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3.2
|
3 |
+
datasets:
|
4 |
+
- HuggingFaceH4/ultrafeedback_binarized
|
5 |
+
base_model:
|
6 |
+
- tanliboy/llama-3.2-3b-sft
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
tags:
|
9 |
+
- trl
|
10 |
+
- llama
|
11 |
+
- dpo
|
12 |
+
- alignment
|
13 |
+
- transformers
|
14 |
+
- custome
|
15 |
+
- chat
|
16 |
+
---
|
17 |
+
# Llama-3.2-3B-DPO
|
18 |
+
|
19 |
+
|
20 |
+
## Model Details
|
21 |
+
|
22 |
+
- **Model type:** aligned model
|
23 |
+
- **License:** llama3.2
|
24 |
+
- **Finetuned from model:** [tanliboy/llama-3.2-3b-sft](https://huggingface.co/tanliboy/llama-3.2-3b-sft)
|
25 |
+
- **Training data:** [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
|
26 |
+
- **Training framework:** [trl](https://github.com/huggingface/trl)
|
27 |
+
|
28 |
+
## Training Details
|
29 |
+
|
30 |
+
devices: 4 * NPU 910B-64GB \
|
31 |
+
precision: bf16 mixed-precision \
|
32 |
+
global_batch_size: 128
|
33 |
+
|
34 |
+
### Training Hyperparameters
|
35 |
+
|
36 |
+
`attn_implementation`: None \
|
37 |
+
`beta`: 0.01 \
|
38 |
+
`bf16`: True \
|
39 |
+
`learning_rate`: 8e-7 \
|
40 |
+
`lr_scheduler_type`: cosine \
|
41 |
+
`per_device_train_batch_size`: 8 \
|
42 |
+
`gradient_accumulation_steps`: 4 \
|
43 |
+
`torch_dtype`: bfloat16 \
|
44 |
+
`num_train_epochs`: 1 \
|
45 |
+
`max_prompt_length`: 512 \
|
46 |
+
`max_length`: 1024 \
|
47 |
+
`warmup_ratio`: 0.05
|
48 |
+
|
49 |
+
### Results
|
50 |
+
|
51 |
+
`init_train_loss`: 0.6924 \
|
52 |
+
`final_train_loss`: 0.5792 \
|
53 |
+
`accuracy`: 0.7188 \
|
54 |
+
`reward_margin`: 0.5234
|
55 |
+
|
56 |
+
### Training script
|
57 |
+
|
58 |
+
```python
|
59 |
+
import torch
|
60 |
+
from datasets import load_dataset
|
61 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
62 |
+
import multiprocessing
|
63 |
+
from trl import (
|
64 |
+
DPOConfig,
|
65 |
+
DPOTrainer,
|
66 |
+
ModelConfig,
|
67 |
+
ScriptArguments,
|
68 |
+
TrlParser,
|
69 |
+
get_kbit_device_map,
|
70 |
+
get_peft_config,
|
71 |
+
get_quantization_config,
|
72 |
+
)
|
73 |
+
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE
|
74 |
+
|
75 |
+
if __name__ == "__main__":
|
76 |
+
parser = TrlParser((ScriptArguments, DPOConfig, ModelConfig))
|
77 |
+
script_args, training_args, model_config = parser.parse_args_and_config()
|
78 |
+
|
79 |
+
torch_dtype = (
|
80 |
+
model_config.torch_dtype
|
81 |
+
if model_config.torch_dtype in ["auto", None]
|
82 |
+
else getattr(torch, model_config.torch_dtype)
|
83 |
+
)
|
84 |
+
|
85 |
+
quantization_config = get_quantization_config(model_config)
|
86 |
+
|
87 |
+
model_kwargs = dict(
|
88 |
+
revision=model_config.model_revision,
|
89 |
+
attn_implementation=model_config.attn_implementation,
|
90 |
+
torch_dtype=torch_dtype,
|
91 |
+
use_cache=False if training_args.gradient_checkpointing else True,
|
92 |
+
device_map=get_kbit_device_map() if quantization_config is not None else None,
|
93 |
+
quantization_config=quantization_config,
|
94 |
+
)
|
95 |
+
|
96 |
+
model = AutoModelForCausalLM.from_pretrained(
|
97 |
+
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
|
98 |
+
)
|
99 |
+
|
100 |
+
peft_config = get_peft_config(model_config)
|
101 |
+
if peft_config is None:
|
102 |
+
ref_model = AutoModelForCausalLM.from_pretrained(
|
103 |
+
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
|
104 |
+
)
|
105 |
+
else:
|
106 |
+
ref_model = None
|
107 |
+
|
108 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
109 |
+
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code
|
110 |
+
)
|
111 |
+
if tokenizer.pad_token is None:
|
112 |
+
tokenizer.pad_token = tokenizer.eos_token
|
113 |
+
if tokenizer.chat_template is None:
|
114 |
+
tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE
|
115 |
+
if script_args.ignore_bias_buffers:
|
116 |
+
model._ddp_params_and_buffers_to_ignore = [
|
117 |
+
name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool
|
118 |
+
]
|
119 |
+
|
120 |
+
dataset = load_dataset(script_args.dataset_name,
|
121 |
+
split=script_args.dataset_train_split)
|
122 |
+
dataset=dataset.select_columns(['chosen', 'prompt', 'rejected'])
|
123 |
+
|
124 |
+
trainer = DPOTrainer(
|
125 |
+
model,
|
126 |
+
ref_model,
|
127 |
+
args=training_args,
|
128 |
+
train_dataset=dataset,
|
129 |
+
processing_class=tokenizer,
|
130 |
+
peft_config=peft_config,
|
131 |
+
)
|
132 |
+
|
133 |
+
trainer.train()
|
134 |
+
|
135 |
+
trainer.save_model(training_args.output_dir)
|
136 |
+
```
|