Huertas97
commited on
Commit
•
5329fcf
1
Parent(s):
a7c53bb
First model version
Browse files- 1_Pooling/config.json +7 -0
- README.md +168 -0
- config.json +27 -0
- config_sentence_transformers.json +7 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
language: "multilingual"
|
4 |
+
tags:
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
- multilingual
|
9 |
+
---
|
10 |
+
|
11 |
+
# mstsb-paraphrase-multilingual-mpnet-base-v2
|
12 |
+
|
13 |
+
This is a fine-tuned version of `paraphrase-multilingual-mpnet-base-v2` from [sentence-transformers](https://www.SBERT.net) model with [Semantic Textual Similarity Benchmark](http://ixa2.si.ehu.eus/stswiki/index.php/Main_Page) extended to 15 languages: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering, semantic search and measuring the similarity between two sentences.
|
14 |
+
|
15 |
+
<!--- Describe your model here -->
|
16 |
+
This model is fine-tuned version of `paraphrase-multilingual-mpnet-base-v2` for semantic textual similarity with multilingual data. The dataset used for this fine-tuning is STSb extended to 15 languages with Google Translator. For mantaining data quality the sentence pairs with a confidence value below 0.7 were dropped. The extended dataset is available at [GitHub](https://github.com/Huertas97/Multilingual-STSB). The languages included in the extended version are: ar, cs, de, en, es, fr, hi, it, ja, nl, pl, pt, ru, tr, zh-CN, zh-TW. The pooling operation used to condense the word embeddings into a sentence embedding is mean pooling (more info below).
|
17 |
+
|
18 |
+
<!-- ## Usage (Sentence-Transformers)
|
19 |
+
|
20 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
21 |
+
|
22 |
+
```
|
23 |
+
pip install -U sentence-transformers
|
24 |
+
```
|
25 |
+
|
26 |
+
Then you can use the model like this:
|
27 |
+
|
28 |
+
```python
|
29 |
+
from sentence_transformers import SentenceTransformer
|
30 |
+
# It support several languages
|
31 |
+
sentences = ["This is an example sentence", "Esta es otra frase de ejemplo", "最後の例文"]
|
32 |
+
|
33 |
+
# The pooling technique is automatically detected (mean pooling)
|
34 |
+
model = SentenceTransformer('mstsb-paraphrase-multilingual-mpnet-base-v2')
|
35 |
+
embeddings = model.encode(sentences)
|
36 |
+
print(embeddings)
|
37 |
+
``` -->
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
## Usage (HuggingFace Transformers)
|
42 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
43 |
+
|
44 |
+
```python
|
45 |
+
from transformers import AutoTokenizer, AutoModel
|
46 |
+
import torch
|
47 |
+
|
48 |
+
# We should define the proper pooling function: Mean pooling
|
49 |
+
# Mean Pooling - Take attention mask into account for correct averaging
|
50 |
+
def mean_pooling(model_output, attention_mask):
|
51 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
52 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
53 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
54 |
+
|
55 |
+
|
56 |
+
# Sentences we want sentence embeddings for
|
57 |
+
sentences = ["This is an example sentence", "Esta es otra frase de ejemplo", "最後の例文"]
|
58 |
+
|
59 |
+
# Load model from HuggingFace Hub
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained('AIDA-UPM/mstsb-paraphrase-multilingual-mpnet-base-v2')
|
61 |
+
model = AutoModel.from_pretrained('AIDA-UPM/mstsb-paraphrase-multilingual-mpnet-base-v2')
|
62 |
+
|
63 |
+
# Tokenize sentences
|
64 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
65 |
+
|
66 |
+
# Compute token embeddings
|
67 |
+
with torch.no_grad():
|
68 |
+
model_output = model(**encoded_input)
|
69 |
+
|
70 |
+
# Perform pooling. In this case, max pooling.
|
71 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
72 |
+
|
73 |
+
print("Sentence embeddings:")
|
74 |
+
print(sentence_embeddings)
|
75 |
+
```
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
## Evaluation Results
|
80 |
+
|
81 |
+
<!--- Describe how your model was evaluated -->
|
82 |
+
Check the test results in the Semantic Textual Similarity Tasks. The 15 languages available at the [Multilingual STSB](https://github.com/Huertas97/Multilingual-STSB) have been combined into monolingual and cross-lingual tasks, giving a total of 31 tasks. Monolingual tasks have both sentences from the same language source (e.g., Ar-Ar, Es-Es), while cross-lingual tasks have two sentences, each in a different language being one of them English (e.g., en-ar, en-es). For the sake of readability tasks have been splitted into monolingual and cross-lingual tasks.
|
83 |
+
|
84 |
+
| Monolingual Task | Pearson Cosine test | Spearman Cosine test |
|
85 |
+
|------------------|---------------------|-----------------------|
|
86 |
+
| en;en | 0.868048310692506 | 0.8740170943535747 |
|
87 |
+
| ar;ar | 0.8267139454193487 | 0.8284459741532022 |
|
88 |
+
| cs;cs | 0.8466821720942157 | 0.8485417688803879 |
|
89 |
+
| de;de | 0.8517285961812183 | 0.8557680051557893 |
|
90 |
+
| es;es | 0.8519185309064691 | 0.8552243211580456 |
|
91 |
+
| fr;fr | 0.8430951067985064 | 0.8466614534379704 |
|
92 |
+
| hi;hi | 0.8178258630578092 | 0.8176462079184331 |
|
93 |
+
| it;it | 0.8475909574305637 | 0.8494216064459076 |
|
94 |
+
| ja;ja | 0.8435588859386477 | 0.8456031494178619 |
|
95 |
+
| nl;nl | 0.8486765104527032 | 0.8520856765262531 |
|
96 |
+
| pl;pl | 0.8407840177883407 | 0.8443070467300299 |
|
97 |
+
| pt;pt | 0.8534880178249296 | 0.8578544068829622 |
|
98 |
+
| ru;ru | 0.8390897585455678 | 0.8423041443534423 |
|
99 |
+
| tr;tr | 0.8382125451820572 | 0.8421587450058385 |
|
100 |
+
| zh-CN;zh-CN | 0.826233678946644 | 0.8248515460782744 |
|
101 |
+
| zh-TW;zh-TW | 0.8242683809675422 | 0.8235506799952028 |
|
102 |
+
|
103 |
+
\\
|
104 |
+
|
105 |
+
| Cross-lingual Task | Pearson Cosine test | Spearman Cosine test |
|
106 |
+
|--------------------|---------------------|-----------------------|
|
107 |
+
| en;ar | 0.7990830340462535 | 0.7956792016468148 |
|
108 |
+
| en;cs | 0.8381274879061265 | 0.8388713450024455 |
|
109 |
+
| en;de | 0.8414439600928739 | 0.8441971698649943 |
|
110 |
+
| en;es | 0.8442337511356952 | 0.8445035292903559 |
|
111 |
+
| en;fr | 0.8378437644605063 | 0.8387903367907733 |
|
112 |
+
| en;hi | 0.7951955086055527 | 0.7905052217683244 |
|
113 |
+
| en;it | 0.8415686372978766 | 0.8419480899107785 |
|
114 |
+
| en;ja | 0.8094306665283388 | 0.8032512280936449 |
|
115 |
+
| en;nl | 0.8389526140129767 | 0.8409310421803277 |
|
116 |
+
| en;pl | 0.8261309163979578 | 0.825976253023656 |
|
117 |
+
| en;pt | 0.8475546209070765 | 0.8506606391790897 |
|
118 |
+
| en;ru | 0.8248514914263723 | 0.8224871183202255 |
|
119 |
+
| en;tr | 0.8191803661207868 | 0.8194200775744044 |
|
120 |
+
| en;zh-CN | 0.8147678083378249 | 0.8102089470690433 |
|
121 |
+
| en;zh-TW | 0.8107272160374955 | 0.8056129680510944 |
|
122 |
+
|
123 |
+
|
124 |
+
## Training
|
125 |
+
The model was trained with the parameters:
|
126 |
+
|
127 |
+
**DataLoader**:
|
128 |
+
|
129 |
+
`torch.utils.data.dataloader.DataLoader` of length 687 with parameters:
|
130 |
+
```
|
131 |
+
{'batch_size': 132, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
132 |
+
```
|
133 |
+
|
134 |
+
**Loss**:
|
135 |
+
|
136 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
137 |
+
|
138 |
+
Parameters of the fit()-Method:
|
139 |
+
```
|
140 |
+
{
|
141 |
+
"callback": null,
|
142 |
+
"epochs": 2,
|
143 |
+
"evaluation_steps": 1000,
|
144 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
145 |
+
"max_grad_norm": 1,
|
146 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
147 |
+
"optimizer_params": {
|
148 |
+
"lr": 2e-05
|
149 |
+
},
|
150 |
+
"scheduler": "WarmupLinear",
|
151 |
+
"steps_per_epoch": null,
|
152 |
+
"warmup_steps": 140,
|
153 |
+
"weight_decay": 0.01
|
154 |
+
}
|
155 |
+
```
|
156 |
+
|
157 |
+
|
158 |
+
## Full Model Architecture
|
159 |
+
```
|
160 |
+
SentenceTransformer(
|
161 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
162 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
163 |
+
)
|
164 |
+
```
|
165 |
+
|
166 |
+
## Citing & Authors
|
167 |
+
|
168 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/alvaro/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-multilingual-mpnet-base-v2/",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"transformers_version": "4.8.2",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 250002
|
27 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:990cef9b421d6acfca4f685edfb089bb527b269c44dd9c3f03ce549f3bcf9215
|
3 |
+
size 1112259155
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "<unk>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "/home/alvaro/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-multilingual-mpnet-base-v2/", "tokenizer_class": "XLMRobertaTokenizer"}
|