edbeeching HF staff commited on
Commit
f66744c
·
verified ·
1 Parent(s): 167ee6b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -11
README.md CHANGED
@@ -1,35 +1,90 @@
1
  ---
2
- base_model: AI-MO/deepseek-math-7b-sft
3
  tags:
4
  - alignment-handbook
5
  - generated_from_trainer
6
  datasets:
7
  - AI-MO/tora-chosen-v0.7
 
 
 
 
 
 
 
 
 
 
 
8
  model-index:
9
- - name: aimo_v51.2
10
  results: []
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
  should probably proofread and complete it, then remove this comment. -->
15
 
16
- # aimo_v51.2
 
 
 
 
 
 
 
17
 
18
- This model is a fine-tuned version of [AI-MO/deepseek-math-7b-sft](https://huggingface.co/AI-MO/deepseek-math-7b-sft) on the AI-MO/tora-chosen-v0.7 dataset.
19
- It achieves the following results on the evaluation set:
20
- - Loss: 0.5302
21
 
22
  ## Model description
23
 
24
- More information needed
 
 
 
25
 
26
- ## Intended uses & limitations
27
 
28
- More information needed
29
 
30
- ## Training and evaluation data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
- More information needed
33
 
34
  ## Training procedure
35
 
@@ -65,3 +120,18 @@ The following hyperparameters were used during training:
65
  - Pytorch 2.3.1
66
  - Datasets 2.18.0
67
  - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: deepseek-ai/deepseek-math-7b-base
3
  tags:
4
  - alignment-handbook
5
  - generated_from_trainer
6
  datasets:
7
  - AI-MO/tora-chosen-v0.7
8
+ widget:
9
+ - example_title: Math problem
10
+ messages:
11
+ - role: user
12
+ content: "For how many values of the constant $k$ will the polynomial $x^{2}+kx+36$ have two distinct integer roots?"
13
+ output:
14
+ text: >-
15
+ ### Solution: 1. For the polynomial \\( x^2 + kx + 36 \\) to have two distinct integer roots, let's denote these roots by \\( r_1 \\) and \\( r_2 \\).\n\n2. According to Vieta's formulas, the sum of the roots \\( r_1 + r_2 \\) is equal to \\(-k\\), and the product of the roots \\( r_1 \\cdot r_2 \\) is equal to 36.\n\n3. To find the distinct integer pairs \\((r_1, r_2)\\) whose product is 36, we need to determine all pairs of integers \\((r_1, r_2)\\) such that \\( r_1 \\cdot r_2 = 36 \\) and \\( r_1 \\neq r_2 \\).\n\n4. From the equation \\( r_1 + r_2 = -k \\), for each valid pair \\((r_1, r_2)\\), we can compute the corresponding value of \\( k \\).\n\n5. Finally, since we need the polynomial to have two distinct integer roots, we need to ensure that \\( r_1 \\) and \\( r_2 \\) are distinct.\n\nLet's start by finding all pairs \\((r_1, r_2)\\) such that \\( r_1 \\cdot r_2 = 36 \\). We'll then determine the values of \\( k \\) and ensure the roots are distinct.\n```python\nimport itertools\n\n# Find all pairs (r1, r2) such that r1 * r2 = 36\nproduct_36 = 36\nfactor_pairs = []\n\nfor i in range(1, product_36 + 1):\n if product_36 % i == 0:\n pair = (i, product_36 // i)\n if pair[0] != pair[1]: # Ensure distinct pairs\n factor_pairs.append(pair)\n\n# Calculate k for each pair and ensure distinct integer roots\nvalid_k_values = set()\nfor r1, r2 in factor_pairs:\n if r1 != r2:\n k = -(r1 + r2)\n valid_k_values.add(k)\n\nprint((len(valid_k_values), sorted(valid_k_values)))\n```\n```output\n(4, [-37, -20, -15, -13])\n```\nThe distinct integer values of \\( k \\) that make the polynomial \\( x^2 + kx + 36 \\) have two distinct integer roots are \\(-37, -20, -15, \\text{and} -13\\).\n\nTherefore, the number of such values of \\( k \\) is:\n\n\\[\n\\boxed{4}\n\\]\n
16
+ pipeline_tag: text-generation
17
+
18
+
19
  model-index:
20
+ - name: Numina-Math-7B
21
  results: []
22
  ---
23
 
24
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
25
  should probably proofread and complete it, then remove this comment. -->
26
 
27
+ # Model Card for Numina-Math-7B
28
+
29
+ Numina-Math is a series of language models that are trained to solve math problems using tool integrated reasoning.
30
+ Numina-Math-7b won the first AI Math Olympiad, with a score of 29/50 on the public and private tests sets.
31
+ This model is a fine-tuned version of [deepseek-ai/deepseek-math-7b-base](https://huggingface.co/deepseek-ai/deepseek-math-7b-base) with two stages on Math Question answers and multi-step synthetic generations using tool integrated reasoning.
32
+
33
+
34
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6200d0a443eb0913fa2df7cc/NyhBs_gzg40iwL995DO9L.png)
35
 
 
 
 
36
 
37
  ## Model description
38
 
39
+ - **Model type:** A 7B parameter Math model fine-tuned in two stages on Math Question answers and multi-step synthetic generations using tool integrated reasoning.
40
+ - **Language(s) (NLP):** Primarily English
41
+ - **License:** MIT
42
+ - **Finetuned from model:** [deepseek-ai/deepseek-math-7b-base](https://huggingface.co/deepseek-ai/deepseek-math-7b-base)
43
 
44
+ ### Model Sources
45
 
46
+ <!-- Provide the basic links for the model. -->
47
 
48
+ - **Repository:** Coming soon to https://github.com/huggingface/alignment-handbook
49
+ - **Demo:** https://huggingface.co/spaces/AI-MO/math-olympiad-solver
50
+
51
+ ## Intended uses & limitations
52
+
53
+ Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
54
+
55
+ ```python
56
+ # Install transformers from source - only needed for versions <= v4.34
57
+ # pip install git+https://github.com/huggingface/transformers.git
58
+ # pip install accelerate
59
+
60
+ import torch
61
+ from transformers import pipeline
62
+
63
+ pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")
64
+
65
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
66
+ messages = [
67
+ {
68
+ "role": "system",
69
+ "content": "You are a friendly chatbot who always responds in the style of a pirate",
70
+ },
71
+ {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
72
+ ]
73
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
74
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
75
+ print(outputs[0]["generated_text"])
76
+ # <|system|>
77
+ # You are a friendly chatbot who always responds in the style of a pirate.</s>
78
+ # <|user|>
79
+ # How many helicopters can a human eat in one sitting?</s>
80
+ # <|assistant|>
81
+ # Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
82
+ ```
83
+ ## Bias, Risks, and Limitations
84
+
85
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
86
+ Numina-Math-7B was create to solve math problems, the model has not been align to preferences beyond the domain of solving math, and should not be used in a general chat setting.
87
 
 
88
 
89
  ## Training procedure
90
 
 
120
  - Pytorch 2.3.1
121
  - Datasets 2.18.0
122
  - Tokenizers 0.19.1
123
+
124
+ ## Citation
125
+
126
+ If you find Numina-Math is useful in your work, please cite it with:
127
+
128
+ ```
129
+ @misc{beeching2024numina-math,
130
+ title={Numina Math},
131
+ author={Edward Beeching and Lewis Tunstall and Roman Soletskyi and Kashif Rasul and Shengyi Huang and Jia Li},
132
+ year={2024},
133
+ publisher = {Hugging Face},
134
+ journal = {Hugging Face repository},
135
+ howpublished = {\url{https://huggingface.co/AI-MO/Numina-Math-7B}}
136
+ }
137
+ ```