Add differenceに対応したよ
Browse files- keybased_modelmerger.py +81 -30
keybased_modelmerger.py
CHANGED
@@ -10,36 +10,57 @@ class KeyBasedModelMerger(scripts.Script):
|
|
10 |
return "Key-based model merging"
|
11 |
|
12 |
def ui(self, is_txt2img):
|
13 |
-
# UI コンポーネントを定義
|
14 |
model_names = sorted(sd_models.checkpoints_list.keys(), key=str.casefold)
|
15 |
-
|
16 |
model_a_dropdown = gr.Dropdown(
|
17 |
label="Model A", choices=model_names, value=model_names[0] if model_names else None
|
18 |
)
|
19 |
model_b_dropdown = gr.Dropdown(
|
20 |
label="Model B", choices=model_names, value=model_names[0] if model_names else None
|
21 |
)
|
|
|
|
|
|
|
22 |
keys_and_alphas_textbox = gr.Textbox(
|
23 |
label="マージするテンソルのキーとマージ比率 (部分一致, 1行に1つ, カンマ区切り)",
|
24 |
lines=5,
|
25 |
placeholder="例:\nmodel.diffusion_model.input_blocks.0,0.5\nmodel.diffusion_model.middle_block,0.3"
|
26 |
)
|
27 |
merge_checkbox = gr.Checkbox(label="モデルのマージを有効にする", value=True)
|
28 |
-
use_gpu_checkbox = gr.Checkbox(label="GPUを使用", value=True)
|
29 |
batch_size_slider = gr.Slider(minimum=1, maximum=500, step=1, value=250, label="KeyMgerge_BatchSize")
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
return [model_a_dropdown, model_b_dropdown,
|
|
|
32 |
|
33 |
-
def run(self, p, model_a_name, model_b_name,
|
34 |
-
|
35 |
-
|
|
|
36 |
return p
|
37 |
|
38 |
try:
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
except KeyError as e:
|
42 |
-
print(f"Error: Selected model is not found in checkpoints list.
|
43 |
return p
|
44 |
|
45 |
# マージ処理
|
@@ -52,11 +73,11 @@ class KeyBasedModelMerger(scripts.Script):
|
|
52 |
alpha = float(alpha_str)
|
53 |
input_keys_and_alphas.append((key_part, alpha))
|
54 |
except ValueError:
|
55 |
-
print(f"Invalid alpha value in line '
|
56 |
-
|
57 |
# state_dictからキーのリストを事前に作成
|
58 |
model_keys = list(shared.sd_model.state_dict().keys())
|
59 |
-
|
60 |
# 部分一致検索を行う
|
61 |
final_keys_and_alphas = {}
|
62 |
for key_part, alpha in input_keys_and_alphas:
|
@@ -70,24 +91,54 @@ class KeyBasedModelMerger(scripts.Script):
|
|
70 |
# バッチ処理でキーをまとめて処理
|
71 |
batched_keys = list(final_keys_and_alphas.items())
|
72 |
|
73 |
-
#
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
batch = batched_keys[i:i + batch_size]
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
return "Key-based model merging"
|
11 |
|
12 |
def ui(self, is_txt2img):
|
|
|
13 |
model_names = sorted(sd_models.checkpoints_list.keys(), key=str.casefold)
|
14 |
+
|
15 |
model_a_dropdown = gr.Dropdown(
|
16 |
label="Model A", choices=model_names, value=model_names[0] if model_names else None
|
17 |
)
|
18 |
model_b_dropdown = gr.Dropdown(
|
19 |
label="Model B", choices=model_names, value=model_names[0] if model_names else None
|
20 |
)
|
21 |
+
model_c_dropdown = gr.Dropdown(
|
22 |
+
label="Model C (Add difference mode用)", choices=model_names, value=model_names[0] if model_names else None
|
23 |
+
)
|
24 |
keys_and_alphas_textbox = gr.Textbox(
|
25 |
label="マージするテンソルのキーとマージ比率 (部分一致, 1行に1つ, カンマ区切り)",
|
26 |
lines=5,
|
27 |
placeholder="例:\nmodel.diffusion_model.input_blocks.0,0.5\nmodel.diffusion_model.middle_block,0.3"
|
28 |
)
|
29 |
merge_checkbox = gr.Checkbox(label="モデルのマージを有効にする", value=True)
|
30 |
+
use_gpu_checkbox = gr.Checkbox(label="GPUを使用", value=True)
|
31 |
batch_size_slider = gr.Slider(minimum=1, maximum=500, step=1, value=250, label="KeyMgerge_BatchSize")
|
32 |
+
merge_mode_dropdown = gr.Dropdown(
|
33 |
+
label="Merge Mode",
|
34 |
+
choices=["Normal", "Add difference (B-C to Current)", "Add difference (A + (B-C) to Current)"],
|
35 |
+
value="Normal"
|
36 |
+
)
|
37 |
|
38 |
+
return [model_a_dropdown, model_b_dropdown, model_c_dropdown, keys_and_alphas_textbox,
|
39 |
+
merge_checkbox, use_gpu_checkbox, batch_size_slider, merge_mode_dropdown]
|
40 |
|
41 |
+
def run(self, p, model_a_name, model_b_name, model_c_name, keys_and_alphas_str,
|
42 |
+
merge_enabled, use_gpu, batch_size, merge_mode):
|
43 |
+
if not model_b_name:
|
44 |
+
print("Error: Model B is not selected.")
|
45 |
return p
|
46 |
|
47 |
try:
|
48 |
+
# 必要なモデルファイルだけを読み込む
|
49 |
+
if merge_mode == "Normal":
|
50 |
+
model_a_filename = sd_models.checkpoints_list[model_a_name].filename
|
51 |
+
model_b_filename = sd_models.checkpoints_list[model_b_name].filename
|
52 |
+
elif merge_mode == "Add difference (B-C to Current)":
|
53 |
+
model_b_filename = sd_models.checkpoints_list[model_b_name].filename
|
54 |
+
model_c_filename = sd_models.checkpoints_list[model_c_name].filename
|
55 |
+
elif merge_mode == "Add difference (A + (B-C) to Current)":
|
56 |
+
model_a_filename = sd_models.checkpoints_list[model_a_name].filename
|
57 |
+
model_b_filename = sd_models.checkpoints_list[model_b_name].filename
|
58 |
+
model_c_filename = sd_models.checkpoints_list[model_c_name].filename
|
59 |
+
else:
|
60 |
+
raise ValueError(f"Invalid merge mode: ")
|
61 |
+
|
62 |
except KeyError as e:
|
63 |
+
print(f"Error: Selected model is not found in checkpoints list. ")
|
64 |
return p
|
65 |
|
66 |
# マージ処理
|
|
|
73 |
alpha = float(alpha_str)
|
74 |
input_keys_and_alphas.append((key_part, alpha))
|
75 |
except ValueError:
|
76 |
+
print(f"Invalid alpha value in line '', skipping...")
|
77 |
+
|
78 |
# state_dictからキーのリストを事前に作成
|
79 |
model_keys = list(shared.sd_model.state_dict().keys())
|
80 |
+
|
81 |
# 部分一致検索を行う
|
82 |
final_keys_and_alphas = {}
|
83 |
for key_part, alpha in input_keys_and_alphas:
|
|
|
91 |
# バッチ処理でキーをまとめて処理
|
92 |
batched_keys = list(final_keys_and_alphas.items())
|
93 |
|
94 |
+
# モデルファイルを開く
|
95 |
+
if merge_mode == "Normal":
|
96 |
+
with safe_open(model_a_filename, framework="pt", device=device) as f_a, \
|
97 |
+
safe_open(model_b_filename, framework="pt", device=device) as f_b:
|
98 |
+
self._merge_models(f_a, f_b, None, batched_keys, final_keys_and_alphas, batch_size, merge_mode, device)
|
99 |
+
elif merge_mode == "Add difference (B-C to Current)":
|
100 |
+
with safe_open(model_b_filename, framework="pt", device=device) as f_b, \
|
101 |
+
safe_open(model_c_filename, framework="pt", device=device) as f_c:
|
102 |
+
self._merge_models(None, f_b, f_c, batched_keys, final_keys_and_alphas, batch_size, merge_mode, device)
|
103 |
+
elif merge_mode == "Add difference (A + (B-C) to Current)":
|
104 |
+
with safe_open(model_a_filename, framework="pt", device=device) as f_a, \
|
105 |
+
safe_open(model_b_filename, framework="pt", device=device) as f_b, \
|
106 |
+
safe_open(model_c_filename, framework="pt", device=device) as f_c:
|
107 |
+
self._merge_models(f_a, f_b, f_c, batched_keys, final_keys_and_alphas, batch_size, merge_mode, device)
|
108 |
+
else:
|
109 |
+
raise ValueError(f"Invalid merge mode: ")
|
110 |
|
111 |
+
# 必要に応じて process_images を実行
|
112 |
+
return process_images(p)
|
|
|
113 |
|
114 |
+
def _merge_models(self, f_a, f_b, f_c, batched_keys, final_keys_and_alphas, batch_size, merge_mode, device):
|
115 |
+
# バッチごとに処理
|
116 |
+
for i in range(0, len(batched_keys), batch_size):
|
117 |
+
batch = batched_keys[i:i + batch_size]
|
118 |
|
119 |
+
# バッチでテンソルを取得
|
120 |
+
tensors_a = [f_a.get_tensor(key) for key, _ in batch] if f_a is not None else None
|
121 |
+
tensors_b = [f_b.get_tensor(key) for key, _ in batch] if f_b is not None else None
|
122 |
+
tensors_c = [f_c.get_tensor(key) for key, _ in batch] if f_c is not None else None
|
123 |
+
alphas = [final_keys_and_alphas[key] for key, _ in batch]
|
124 |
|
125 |
+
# マージ処理の実行
|
126 |
+
for j, (key, alpha) in enumerate(batch):
|
127 |
+
tensor_a = tensors_a[j] if tensors_a is not None else None
|
128 |
+
tensor_b = tensors_b[j] if tensors_b is not None else None
|
129 |
+
tensor_c = tensors_c[j] if tensors_c is not None else None
|
130 |
+
|
131 |
+
if merge_mode == "Normal":
|
132 |
+
merged_tensor = torch.lerp(tensor_a, tensor_b, alpha)
|
133 |
+
print(f"NomalMerged:{alpha}:{key}")
|
134 |
+
elif merge_mode == "Add difference (B-C to Current)":
|
135 |
+
merged_tensor = shared.sd_model.state_dict()[key] + alpha * (tensor_b - tensor_c)
|
136 |
+
print(f"(B-C to Current):{alpha}:{key}")
|
137 |
+
elif merge_mode == "Add difference (A + (B-C) to Current)":
|
138 |
+
merged_tensor = tensor_a + alpha * (tensor_b - tensor_c)
|
139 |
+
print(f"(A + (B-C) to Current):{alpha}:{key}")
|
140 |
+
else:
|
141 |
+
raise ValueError(f"Invalid merge mode: ")
|
142 |
+
|
143 |
+
shared.sd_model.state_dict()[key].copy_(merged_tensor.to(device))
|
144 |
+
|