--- license: apache-2.0 base_model: distilbert-base-multilingual-cased tags: - generated_from_trainer model-index: - name: distilbert-base-multilingual-cased-finetuned-email-spam results: [] widget: - text: "From: \"Derila\" \nX-MailFrom: \nTo: \nReply-To: \"Derila\" \nSubject: L'oreiller Derila #1 en France\"" example_title: spam_1 - text: "From: Disney \nX-MailFrom: disney@awggcj.us\nTo: \nReply-To: \nSubject: Your 90 Day Disney PIus Membership Must Be Activated By Tomorrow" example_title: spam_2 - text: "From: HuIu \nX-MailFrom: huiu@awaqac.net\nTo: \nReply-To: \nSubject: Your HuIu Membership Has Ended But We Are Giving You An Extra 90 Days, Today Only" example_title: spam_3 - text: "From: Laurent Fainsin \nX-MailFrom: \nTo: net7@bde.enseeiht.fr\nReply-To: \nSubject: [net7] Fwd: Re: Demande d'un H24 net7" example_title: ham_1 - text: "From: \nX-MailFrom: \nTo: net7@bde.enseeiht.fr\nReply-To: \nSubject: [net7] Fwd: [CERT-RENATER #84796] 2022/INCIDENT (CERTSVP20220421-21) Presence potentielle d'une version vulnerable d'instance Grafana sur grafana.thcon.party" example_title: ham_2 - text: "From: \nX-MailFrom: remi.goudin@enseeiht.fr\nTo: net7@bde.enseeiht.fr\nReply-To: \nSubject: Fwd: [CERT-RENATER #94661] 2023/INCIDENT (CERTSVP20230216-25) Probable Infection par un Trojan du type Info Stealer : AveMaria Stealer depuis 147.127.160.236 / neo.bde.inp-toulouse.fr sur votre domaine enseeiht.fr" example_title: ham_3 --- # distilbert-base-multilingual-cased-finetuned-email-spam This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co./distilbert-base-multilingual-cased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - label_smoothing_factor: 0.1 ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3