--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-spa_saloon_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.965195246179966 --- # swin-tiny-patch4-window7-224-spa_saloon_classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1075 - Accuracy: 0.9652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4613 | 1.0 | 83 | 0.3357 | 0.8718 | | 0.2908 | 2.0 | 166 | 0.1805 | 0.9312 | | 0.2341 | 3.0 | 249 | 0.1426 | 0.9516 | | 0.1907 | 4.0 | 332 | 0.1471 | 0.9423 | | 0.1836 | 5.0 | 415 | 0.1177 | 0.9576 | | 0.1669 | 6.0 | 498 | 0.1131 | 0.9669 | | 0.152 | 7.0 | 581 | 0.1100 | 0.9660 | | 0.1666 | 8.0 | 664 | 0.1130 | 0.9626 | | 0.1374 | 9.0 | 747 | 0.1132 | 0.9669 | | 0.1278 | 10.0 | 830 | 0.1075 | 0.9652 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3