--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: spa_images_classifier_jd_v1_convnext results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.978066110596231 --- # spa_images_classifier_jd_v1_convnext This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0662 - Accuracy: 0.9781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2494 | 1.0 | 227 | 0.1194 | 0.9555 | | 0.2333 | 2.0 | 455 | 0.1008 | 0.9635 | | 0.1977 | 3.0 | 683 | 0.0855 | 0.9703 | | 0.1405 | 4.0 | 911 | 0.0792 | 0.9744 | | 0.1575 | 5.0 | 1138 | 0.0734 | 0.9731 | | 0.0948 | 6.0 | 1366 | 0.0666 | 0.9778 | | 0.1049 | 7.0 | 1594 | 0.0662 | 0.9781 | | 0.0928 | 8.0 | 1822 | 0.0693 | 0.9774 | | 0.0903 | 9.0 | 2049 | 0.0704 | 0.9771 | | 0.0759 | 9.97 | 2270 | 0.0652 | 0.9778 | ### Framework versions - Transformers 4.35.0 - Pytorch 1.12.1+cu113 - Datasets 2.17.1 - Tokenizers 0.14.1