--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: bridalMakeupClassifier_binary results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 - name: Precision type: precision value: 1.0 - name: Recall type: recall value: 1.0 - name: F1 type: f1 value: 1.0 --- # bridalMakeupClassifier_binary This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0072 - Accuracy: 1.0 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2966 | 1.0 | 23 | 0.1290 | 0.9662 | 0.9432 | 0.9326 | 0.9379 | | 0.1233 | 2.0 | 46 | 0.0407 | 0.9877 | 0.9670 | 0.9888 | 0.9778 | | 0.0469 | 3.0 | 69 | 0.0594 | 0.9815 | 0.9368 | 1.0 | 0.9674 | | 0.0394 | 4.0 | 92 | 0.0557 | 0.9877 | 0.9670 | 0.9888 | 0.9778 | | 0.0909 | 5.0 | 115 | 0.0401 | 0.9908 | 0.9674 | 1.0 | 0.9834 | | 0.05 | 6.0 | 138 | 0.0252 | 0.9877 | 0.9670 | 0.9888 | 0.9778 | | 0.0451 | 7.0 | 161 | 0.0279 | 0.9877 | 0.9885 | 0.9663 | 0.9773 | | 0.0231 | 8.0 | 184 | 0.0278 | 0.9938 | 0.9780 | 1.0 | 0.9889 | | 0.0404 | 9.0 | 207 | 0.0256 | 0.9877 | 0.9775 | 0.9775 | 0.9775 | | 0.0297 | 10.0 | 230 | 0.0260 | 0.9908 | 0.9778 | 0.9888 | 0.9832 | | 0.0327 | 11.0 | 253 | 0.0230 | 0.9938 | 0.9780 | 1.0 | 0.9889 | | 0.0221 | 12.0 | 276 | 0.0140 | 0.9969 | 0.9889 | 1.0 | 0.9944 | | 0.0294 | 13.0 | 299 | 0.0106 | 0.9969 | 0.9889 | 1.0 | 0.9944 | | 0.0292 | 14.0 | 322 | 0.0132 | 0.9969 | 0.9889 | 1.0 | 0.9944 | | 0.0064 | 15.0 | 345 | 0.0231 | 0.9908 | 0.9674 | 1.0 | 0.9834 | | 0.02 | 16.0 | 368 | 0.0087 | 0.9969 | 0.9889 | 1.0 | 0.9944 | | 0.0356 | 17.0 | 391 | 0.0114 | 0.9969 | 0.9889 | 1.0 | 0.9944 | | 0.0232 | 18.0 | 414 | 0.0072 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0351 | 19.0 | 437 | 0.0087 | 0.9969 | 0.9889 | 1.0 | 0.9944 | | 0.0155 | 20.0 | 460 | 0.0075 | 0.9969 | 0.9889 | 1.0 | 0.9944 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.0