Model save
Browse files- README.md +113 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: microsoft/swin-tiny-patch4-window7-224
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- imagefolder
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
- f1
|
14 |
+
model-index:
|
15 |
+
- name: bridalMakeupClassifier_binary
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Image Classification
|
19 |
+
type: image-classification
|
20 |
+
dataset:
|
21 |
+
name: imagefolder
|
22 |
+
type: imagefolder
|
23 |
+
config: default
|
24 |
+
split: train
|
25 |
+
args: default
|
26 |
+
metrics:
|
27 |
+
- name: Accuracy
|
28 |
+
type: accuracy
|
29 |
+
value: 0.9969230769230769
|
30 |
+
- name: Precision
|
31 |
+
type: precision
|
32 |
+
value: 0.9888888888888889
|
33 |
+
- name: Recall
|
34 |
+
type: recall
|
35 |
+
value: 1.0
|
36 |
+
- name: F1
|
37 |
+
type: f1
|
38 |
+
value: 0.9944134078212291
|
39 |
+
---
|
40 |
+
|
41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
+
should probably proofread and complete it, then remove this comment. -->
|
43 |
+
|
44 |
+
# bridalMakeupClassifier_binary
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
47 |
+
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.0075
|
49 |
+
- Accuracy: 0.9969
|
50 |
+
- Precision: 0.9889
|
51 |
+
- Recall: 1.0
|
52 |
+
- F1: 0.9944
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 5e-05
|
72 |
+
- train_batch_size: 32
|
73 |
+
- eval_batch_size: 32
|
74 |
+
- seed: 42
|
75 |
+
- gradient_accumulation_steps: 4
|
76 |
+
- total_train_batch_size: 128
|
77 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
78 |
+
- lr_scheduler_type: linear
|
79 |
+
- lr_scheduler_warmup_ratio: 0.1
|
80 |
+
- num_epochs: 20
|
81 |
+
|
82 |
+
### Training results
|
83 |
+
|
84 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
85 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
86 |
+
| 0.2966 | 1.0 | 23 | 0.1290 | 0.9662 | 0.9432 | 0.9326 | 0.9379 |
|
87 |
+
| 0.1233 | 2.0 | 46 | 0.0407 | 0.9877 | 0.9670 | 0.9888 | 0.9778 |
|
88 |
+
| 0.0469 | 3.0 | 69 | 0.0594 | 0.9815 | 0.9368 | 1.0 | 0.9674 |
|
89 |
+
| 0.0394 | 4.0 | 92 | 0.0557 | 0.9877 | 0.9670 | 0.9888 | 0.9778 |
|
90 |
+
| 0.0909 | 5.0 | 115 | 0.0401 | 0.9908 | 0.9674 | 1.0 | 0.9834 |
|
91 |
+
| 0.05 | 6.0 | 138 | 0.0252 | 0.9877 | 0.9670 | 0.9888 | 0.9778 |
|
92 |
+
| 0.0451 | 7.0 | 161 | 0.0279 | 0.9877 | 0.9885 | 0.9663 | 0.9773 |
|
93 |
+
| 0.0231 | 8.0 | 184 | 0.0278 | 0.9938 | 0.9780 | 1.0 | 0.9889 |
|
94 |
+
| 0.0404 | 9.0 | 207 | 0.0256 | 0.9877 | 0.9775 | 0.9775 | 0.9775 |
|
95 |
+
| 0.0297 | 10.0 | 230 | 0.0260 | 0.9908 | 0.9778 | 0.9888 | 0.9832 |
|
96 |
+
| 0.0327 | 11.0 | 253 | 0.0230 | 0.9938 | 0.9780 | 1.0 | 0.9889 |
|
97 |
+
| 0.0221 | 12.0 | 276 | 0.0140 | 0.9969 | 0.9889 | 1.0 | 0.9944 |
|
98 |
+
| 0.0294 | 13.0 | 299 | 0.0106 | 0.9969 | 0.9889 | 1.0 | 0.9944 |
|
99 |
+
| 0.0292 | 14.0 | 322 | 0.0132 | 0.9969 | 0.9889 | 1.0 | 0.9944 |
|
100 |
+
| 0.0064 | 15.0 | 345 | 0.0231 | 0.9908 | 0.9674 | 1.0 | 0.9834 |
|
101 |
+
| 0.02 | 16.0 | 368 | 0.0087 | 0.9969 | 0.9889 | 1.0 | 0.9944 |
|
102 |
+
| 0.0356 | 17.0 | 391 | 0.0114 | 0.9969 | 0.9889 | 1.0 | 0.9944 |
|
103 |
+
| 0.0232 | 18.0 | 414 | 0.0072 | 1.0 | 1.0 | 1.0 | 1.0 |
|
104 |
+
| 0.0351 | 19.0 | 437 | 0.0087 | 0.9969 | 0.9889 | 1.0 | 0.9944 |
|
105 |
+
| 0.0155 | 20.0 | 460 | 0.0075 | 0.9969 | 0.9889 | 1.0 | 0.9944 |
|
106 |
+
|
107 |
+
|
108 |
+
### Framework versions
|
109 |
+
|
110 |
+
- Transformers 4.45.1
|
111 |
+
- Pytorch 2.4.1+cu121
|
112 |
+
- Datasets 2.21.0
|
113 |
+
- Tokenizers 0.20.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 110342832
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abecf1cea71f4a3400d0f69afc50d89d1273b8478b611fd87d0a24d292d11ad5
|
3 |
size 110342832
|