--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: bridalMakeupClassifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9969230769230769 --- # bridalMakeupClassifier This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0326 - Accuracy: 0.9969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1604 | 1.0 | 23 | 0.0509 | 0.9846 | | 0.0837 | 2.0 | 46 | 0.0353 | 0.9877 | | 0.0588 | 3.0 | 69 | 0.0326 | 0.9969 | | 0.05 | 4.0 | 92 | 0.0302 | 0.9969 | | 0.0284 | 5.0 | 115 | 0.0313 | 0.9938 | | 0.0372 | 6.0 | 138 | 0.0273 | 0.9938 | | 0.0461 | 7.0 | 161 | 0.0268 | 0.9969 | | 0.0338 | 8.0 | 184 | 0.0259 | 0.9969 | | 0.0253 | 9.0 | 207 | 0.0256 | 0.9938 | | 0.0326 | 10.0 | 230 | 0.0266 | 0.9969 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.0