--- library_name: transformers license: mit base_model: 100daggers/reuters-gpt2-text-gen tags: - generated_from_trainer model-index: - name: reuters-gpt2-text-gen results: [] --- # reuters-gpt2-text-gen This model is a fine-tuned version of [100daggers/reuters-gpt2-text-gen](https://huggingface.co./100daggers/reuters-gpt2-text-gen) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.9508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.2626 | 0.9987 | 286 | 4.4727 | | 3.7809 | 1.9974 | 572 | 4.2128 | | 3.5797 | 2.9996 | 859 | 4.0473 | | 3.2899 | 3.9983 | 1145 | 3.9684 | | 3.2056 | 4.9935 | 1430 | 3.9508 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.0.1 - Datasets 2.21.0 - Tokenizers 0.19.1